Development of time-domain differential Raman for transient thermal probing of materials.
نویسندگان
چکیده
A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at μs resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking into account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10(-5), 8.14 × 10(-5), and 9.51 × 10(-5) m(2)/s. These results agree well with the reference value of 8.66 × 10(-5) m(2)/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.
منابع مشابه
Thermal characterization of carbon nanotube fiber by time-domain differential Raman
Most conventional Raman thermometry for thermal properties measurement is on steady-state basis, which utilizes either Joule heating effect or two lasers configurations coupled with increased complexity of system or measurement uncertainty. In this work, a new comprehensive approach including both transient and steady-state Raman method is proposed for thermal properties measurement of micro/ n...
متن کاملFrequency-resolved Raman for transient thermal probing and thermal diffusivity measurement.
A new transient Raman thermal probing technique, frequency-resolved Raman (FR-Raman), is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude-modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, ...
متن کاملOptical based thermal probing and characterization
Optical methods are promising tools for small-scale thermal probing and characterization. A lab-developed photothermal (PT) technique provides a noncontact method to characterize the thermal transport along the thickness direction of a multilayered film by analyzing the phase shift of the thermal radiation from the sample’s surface. Aiming to reduce the calibration in the phase shift method, a ...
متن کاملTransient Natural Convection in an Enclosure with Variable Thermal Expansion Coefficient and Nanofluid Properties
Transient natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity, and the thermal expansion coefficient of Al2O3-water nanofluid. The study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ ϕ ≤ 7%), the enclosure aspect ratio (AR =1), and temperature differences between the cold a...
متن کاملTransient Coherent Raman Scattering in the Time and Frequency Domain
A new type of Raman spectroscopy is presented: After transient excitation of molecular modes coherently scattered Raman spectra are investigated in" a delayed probing experiment. The spectral position of the Raman mode is observed after long delay times. The dephasing time is obtained from the time dependence of the scattered amplitudes. Frequency disturbing non-resonant susceptibilities are el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2015