Automatic Detection of Premature Ventricular Contraction Using Quantum Neural Networks

نویسنده

  • Jie Zhou
چکیده

Premature ventricular contractions (PVCs) are ectopic heart beats originating from ventricular area. It is a common form of heart arrhythmia. Electrocardiogram (ECG) recordings have been widely used to assist cardiologists to diagnose the problem. In this paper, we study the automatic detection of PVC using a fuzzy artificial neural network named Quantum Neural Network (QNN). With the quantum neurons in the network, trained QNN can model the levels of uncertainty arising from complex classification problems. This fuzzy feature is expected to enhance the reliability of the algorithm, which is critical for the applications in the biomedical domain. Experiments were conducted on ECG records in the MIT-BIH Arrhythmia Database. Results showed consistently higher or same reliability of QNN on all the available records compared to the backpropagation network. QNN, however, has a relatively higher resource requirement for training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

An Adaptive Backpropagation Neural Network for Arrhythmia Classification Using R-r Interval Signal

Automatic detection and classification of cardiac arrhythmias with high accuracy and by using as little information as possible is highly useful in Holter monitoring of the high risk patients and in telemedicine applications where the amount of information which must be transmitted is an important issue. To this end, we have used an adaptive-learning-rate neural network for automatic classifica...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Automatic classification of ECG beats using waveform shape and heart beat interval features

This paper presents the classification performance of an automatic classifier of the electrocardiogram (ECG) for the detection of normal, premature ventricular contraction and fusion beat types. Both linear discriminants and feed forward neural networks were considered for the classifier model. Features based on the ECG waveform shape and heart beat intervals were used as inputs to the classifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003