Microstructure and Characteristics of Calcium Phosphate Layers on Bioactive Oxide Surfaces of Air-Sintered Titanium Foams after Immersion in Simulated Body Fluid

نویسندگان

  • Hung-Bin Lee
  • Hsueh-Chuan Hsu
  • Shih-Ching Wu
  • Shih-Kuang Hsu
  • Peng-Hsiang Wang
  • Wen-Fu Ho
چکیده

We propose a simple and low-cost process for the preparation of porous Ti foams through a sponge replication method using single-step air sintering at various temperatures. In this study, the apatite-forming ability of air-sintered Ti samples after 21 days of immersion in simulated body fluid (SBF) was investigated. The microstructures of the prepared Ca-P deposits were examined by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, and cross-sectional transmission electron microscopy (TEM). In contrast to the control sample sintered in vacuum, which was found to have the simple hexagonal α-Ti phase, the air-sintered samples contained only the rutile phase. High intensities of XRD peaks for rutile TiO₂ were obtained with samples sintered at 1000 °C. Moreover, the air-sintered Ti samples had a greater apatite-forming ability than that of the Ti sample sintered in vacuum. Ti samples sintered at 900 and 1000 °C had large aggregated spheroidal particles on their surfaces after immersion in SBF for 21 days. Combined XRD, energy-dispersive X-ray spectroscopy, FTIR spectroscopy, and TEM results suggest that the calcium phosphate deposited on the rutile TiO₂ surfaces consist of carbonated calcium-deficient hydroxyapatite instead of octacalcium phosphate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites

IIn this work, cobalt-based alloy/ nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. The scanning electron microscopy images of two- step sintered composites revealed a relatively dense microstructure the density of which decreased with the increase in the NBG amount. M...

متن کامل

Bioactive calcium phosphate coating prepared on H2O2-treated titanium substrate by electrodeposition

This study examined the characteristics of calcium phosphate coatings formed on untreated and H2O2-treated titanium substrates by electrodeposition in a modified simulated body fluid (SBF). A porous coating comprising of mainly hydroxyapatite (HA) was formed on the H2O2-treated titanium substrate by electrodeposition. This coating was transformed into carbonate and calcium-deficient HA layers w...

متن کامل

Precipitation of Calcium Phosphates in the Presence of Collagen Type I on Four Different Bioactive Titanium Surfaces: an in Vitro Study

OBJECTIVES To compare the properties of calcium phosphate precipitation on four different bioactive surface preparations and one control surface in the simulated body fluid model with added collagen type I. MATERIAL AND METHODS Blasted titanium discs were treated with four different surface modifications, alkali and heat, sodium fluoride, anodic oxidation and hydroxyapatite coating. The discs...

متن کامل

Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.

A vertically aligned nanotube array of titanium oxide was fabricated on the surface of titanium substrate by anodization. The nanotubes were then treated with NaOH solution to make them bioactive, and to induce growth of hydroxyapatite (bone-like calcium phosphate) in a simulated body fluid. It is shown that the presence of TiO2 nanotubes induces the growth of a "nano-inspired nanostructure", i...

متن کامل

Preparation of Calcium Phosphate Coatings on Titanium Using the Thermal Substrate Method and Their in vitro Evaluation

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and dicalcium phosphate anhydrous (Ca(H2PO4)2, DCPA) were coated onto titanium substrates using the thermal substrate method in an aqueous solution containing calcium and phosphate ions at 150◦C with pH values in the range 4–8. Specimens with the HAp and DCPA layer were immersed in a simulated body fluid (SBF) to examine the dissolution and induced HAp grow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016