Equilibria in Dynamic Selfish Routing
نویسندگان
چکیده
In both transportation and communication networks we are faced with “selfish flows”, where every agent sending flow over the network desires to get it to its destination as soon as possible. Such flows have been well studied in time-invariant networks in the last few years. A key observation that must be taken into account in defining and studying selfish flow, however, is that a flow can take a non-negligible amount of time to travel across the network from the source to destination, and that network states like traffic load and congestion can vary during this period. Such flows are called dynamic flows (a.k.a. flows over time). This variation in network state as the flow progresses through the network results in the fundamentally different and significantly more complex nature of dynamic flow equilibria, as compared to those defined in static network settings. In this paper, we study equilibria in dynamic flows, and prove various bounds about their quality, as well as give algorithms on how to compute them. In general, we show that unlike in static flows, Nash equilibria may not exist, and the price of anarchy can be extremely high. If the system obeys FIFO (first-in first-out), however, we show the existence and how to compute an equilibrium for all single-source single-sink networks. In addition, we prove a set of much stronger results about price of anarchy and stability in the case where the delay on an edge is flow-independent.
منابع مشابه
Dynamic Selfish Routing and Traffic Optimisation
This work surveys results from [18,19,20,21,22,23]. Recently, the Wardrop model has attracted a lot of attention as a model of selfish behaviour in routing scenarios. In this model, an infinite number of users controls an infinite amount of flow each. The overall flow induces latencies on the edges, and agents strive to minimise their sustained latency selfishly. Most of the studies on this mod...
متن کاملDynamic selfish routing
This thesis deals with dynamic, load-adaptive rerouting policies in game theoretic settings. In the Wardrop model, which forms the basis of our dynamic population model, each of an infinite number of agents injects an infinitesimal amount of flow into a network, which in turn induces latency on the edges. Each agent may choose from a set of paths and strives to minimise its sustained latency se...
متن کاملOn Self Adaptive Routing in Dynamic Environments
Recently we have seen an emergent trend of self adaptive routing in both Internet and wireless ad hoc networks. Although there are previous methods for computing the traffic equilibria of self adaptive routing (e.g., selfish routing), these methods use computationally demanding algorithms and require that a precise analytical model of the network be given. Also, it remains an open question how ...
متن کاملIncentive Compatible and Globally Efficient Position Based Routing for Selfish Reverse Multicast in Wireless Sensor Networks
We consider the problem of all-to-one selfish routing in the absence of a payment scheme in wireless sensor networks, where a natural model for cost is the power required to forward, referring to the resulting game as a Locally Minimum Cost Forwarding (LMCF). Our objective is to characterize equilibria and their global costs in terms of stretch and diameter, in particular finding incentive comp...
متن کاملNetwork Load Games
We study network load games, a class of routing games in networks which generalize selfish routing games on networks consisting of parallel links. In these games, each user aims to route some traffic from a source to a destination so that the maximum load she experiences in the links of the network she occupies is minimum given the routing decisions of other users. We present results related to...
متن کامل