Comparative Proteomic Analysis of Puccinellia tenuiflora Leaves under Na2CO3 Stress
نویسندگان
چکیده
Soil salt-alkalinization is a widespread environmental stress that limits crop growth and agricultural productivity. The influence of soil alkalization caused by Na(2)CO(3) on plants is more severe than that of soil salinization. Plants have evolved some unique mechanisms to cope with alkali stress; however, the plant alkaline-responsive signaling and molecular pathways are still unknown. In the present study, Na(2)CO(3) responsive( )characteristics in leaves from 50-day-old seedlings of halophyte Puccinellia tenuiflora were investigated using physiological and proteomic approaches. Comparative proteomics revealed 43 differentially expressed proteins in P. tenuiflora leaves in response to Na(2)CO(3) treatment for seven days. These proteins were mainly involved in photosynthesis, stress and defense, carbohydrate/energy metabolism, protein metabolism, signaling, membrane and transport. By integrating the changes of photosynthesis, ion contents, and stress-related enzyme activities, some unique Na(2)CO(3) responsive( )mechanisms have been discovered in P. tenuiflora. This study provides new molecular information toward improving the alkali tolerance of cereals.
منابع مشابه
Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses
Soil alkalization severely affects crop growth and agricultural productivity. Alkali salts impose ionic, osmotic, and high pH stresses on plants. The alkali tolerance molecular mechanism in roots from halophyte Puccinellia tenuiflora is still unclear. Here, the changes associated with Na2CO3 tolerance in P. tenuiflora roots were assessed using physiological and iTRAQ-based quantitative proteomi...
متن کاملTranscriptional Responses of a Bicarbonate-Tolerant Monocot, Puccinellia tenuiflora, and a Related Bicarbonate-Sensitive Species, Poa annua, to NaHCO3 Stress
Puccinellia tenuiflora is an alkaline salt-tolerant monocot found in saline-alkali soil in China. To identify the genes which are determining the higher tolerance of P. tenuiflora compared to bicarbonate sensitive species, we examined the responses of P. tenuiflora and a related bicarbonate-sensitive Poeae plant, Poa annua, to two days of 20 mM NaHCO3 stress by RNA-seq analysis. We obtained 28 ...
متن کاملComparative Proteomic Analysis of Two Manilkara Species Leaves Under NaCl Stress
Background: Salinity is a major environmental limiting factor, which affect agricultural production. The two Manilkara seedlings (M. roxburghiana and M. zapota) with high economic importance, could not adapt well to higher soil salinity and little is known about their proteomic mechanisms. Objectives: The mechanisms responsible ...
متن کاملDiscovery and Characterization of Two Novel Salt-Tolerance Genes in Puccinellia tenuiflora
Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9-10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuif...
متن کاملA Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO3 Tolerance by Decreasing H2O2 Accumulation
Rubredoxin is one of the simplest iron-sulfur (Fe-S) proteins. It is found primarily in strict anaerobic bacteria and acts as a mediator of electron transfer participation in different biochemical reactions. The PutRUB gene encoding a chloroplast-localized rubredoxin family protein was screened from a yeast full-length cDNA library of Puccinellia tenuiflora under NaCl and NaHCO₃ stress. We foun...
متن کامل