Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp--Part I: Experimental results.

نویسندگان

  • K L Billiar
  • M S Sacks
چکیده

To date, there are no constitutive models for either the natural or bioprosthetic aortic valve (AV), in part due to experimental complications related to the AV's small size and heterogeneous fibrous structure. In this study, we developed specialized biaxial testing techniques for the AV cusp, including a method to determine the local structure-strain relationship to assess the effects of boundary tethering forces. Natural and glutaraldehyde (GL) treated cusps were subjected to an extensive biaxial testing protocol in which the ratios of the axial tensions were held at constant values. Results indicated that the local fiber architecture clearly dominated cuspal deformation, and that the tethering effects at the specimen boundaries were negligible. Due to unique aspects of cuspal fiber architecture, the most uniform region of deformation was found at the lower portion as opposed to the center of the cuspal specimen. In general, the circumferential strains were much smaller than the radial strains, indicating a profound degree of mechanical anisotropy, and that natural cusps were significantly more extensible than the GL treated cusps. Strong mechanical coupling between biaxial stretch axes produced negative circumferential strains under equibiaxial tension. Further, the large radial strains observed could not be explained by uncrimping of the collagen fibers, but may be due to large rotations of the highly aligned, circumferential-oriented collagen fibers in the fibrosa. In conclusion, this study provides new insights into the AV cusp's structure-function relationship in addition to requisite data for constitutive modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II--A structural constitutive model.

We have formulated the first constitutive model to describe the complete measured planar biaxial stress-strain relationship of the native and glutaraldehyde-treated aortic valve cusp using a structurally guided approach. When applied to native, zero-pressure fixed, and low-pressure fixed cusps, only three parameters were needed to simulate fully the highly anisotropic, and nonlinear in-plane bi...

متن کامل

Stabilized collagen scaffolds for heart valve tissue engineering.

Scaffolds for heart valve tissue engineering must function immediately after implantation but also need to tolerate cell infiltration and gradual remodeling. We hypothesized that moderately cross-linked collagen scaffolds would fulfill these requirements. To test our hypothesis, scaffolds prepared from decellularized porcine pericardium were treated with penta-galloyl glucose (PGG), a collagen-...

متن کامل

Mechanism of efficacy of 2-amino oleic acid for inhibition of calcification of glutaraldehyde-pretreated porcine bioprosthetic heart valves.

BACKGROUND Calcification is a frequent cause of the clinical failures of glutaraldehyde-pretreated bioprosthetic heart valves (BPHV) fabricated from glutaraldehyde-cross-linked porcine aortic valves. 2-Amino oleic acid (AOA) has been shown in previous in vivo studies to be a promising anticalcification agent. Our objective was to investigate the mechanism of calcification inhibition mediated by...

متن کامل

Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets.

To design more effective tissue-engineered heart valve replacements, the replacement tissue may need to mimic the biaxial stress-strain behavior of native heart valve tissue. This study characterized the planar biaxial properties of tissue-engineered valve leaflets and native aortic valve leaflets. Fibrin-based valve equivalent (VE) and porcine aortic valve (PAV) leaflets were subjected to incr...

متن کامل

Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis.

To maintain optimum mechanical properties in glutaraldehyde-treated heart-valve tissue the full collagen crimp geometry originally present in the relaxed fresh tissue should be retained. By varying the pressure at which glutaraldehyde fixation is carried out, considerable alterations to this crimp geometry can be achieved. The mechanical stiffness of the preserved tissue is consequently affecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 122 1  شماره 

صفحات  -

تاریخ انتشار 2000