Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs

نویسندگان

  • Xiangwen Zhang
  • Deqing Yang
چکیده

A preliminary study of the mechanical properties of auxetic cellular material consisting of re-entrant hexagonal honeycombs is presented. For different scales of the honeycombs, the finite element method (FEM) and experimental models are used to perform a parametric analysis on the effects of the Poisson's ratio (cell angle) and the relative density (cell thickness) of honeycombs on bearing capacity and dynamic performance of the auxetic material. The analysis demonstrates that the ultimate bearing capacity of the presented auxetic cellular material is scale-independent when the Poisson's ratio and the relative density are kept constant. The relationship between the geometric parameters and vibration level difference of the honeycombs is also revealed, which can be divided into two converse parts around the Poisson's ratio v = - 1.5 . When v is smaller than -1.5, increasing the cell thickness leads to an increase in the vibration level difference of the honeycombs. Moreover, the dynamic performance of thin-walled honeycombs is greatly influenced by the scale of the honeycombs, especially for the ones with small Poisson's ratio. These conclusions are verified by a frequency response test and a good agreement between the numerical results and experimental data is achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave Propagation in Sandwich Panel with Auxetic Core

Auxetic cellular solids in the forms of honeycombs and foams have great potential in a diverse range of applications, including as core material in curved sandwich panel composite components, radome applications, directional pass band filters, adaptive and deployable structures, filters and sieves, seat cushion material, energy absorption components, viscoelastic damping materials and fastening...

متن کامل

Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami

Graphene is an active element used in the design of nano-electro-mechanical systems (NEMS) owing to its excellent in-plane physical properties on mechanical, electric and thermal aspects. Considering a component requiring negative Poisson's ratio in NEMS, a graphene kirigami (GK) containing periodic re-entrant honeycombs is a natural option. This study demonstrates that a GK with specific auxet...

متن کامل

Negative Poisson's ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides

Materials with a negative Poisson's ratio, also known as auxetic materials, exhibit unusual and counterintuitive mechanical behaviour-becoming fatter in cross-section when stretched. Such behaviour is mostly attributed to some special re-entrant or hinged geometric structures regardless of the chemical composition and electronic structure of a material. Here, using first-principles calculations...

متن کامل

Spiderweb honeycombs

Small and large deformation in-plane elastic response of a new class of hierarchical fractal-like honeycombs inspired by the topology of the ''spiderweb'' were investigated through analytical modeling, detailed numerical simulations, and mechanical testing. Small deformation elasticity results show that the isotropic in-plane elastic moduli (Young's modulus and Poisson's ratio) of the structure...

متن کامل

A THEORETICAL STUDY OF ZEOLITE ABW: ITS MECHANICAL AND AUXETIC PROPERTIES.

Atomistic simulations are carried out for zeolite with ABW framework. The structure is modeled and force field simulations are preformed to investigate its elastic properties, bulk, shear modulus and auxeticity. Bulk moduli (Ks), Shear moduli (G), and Poissons ratios (ν) were found to be Ks=79.71725 GPa, G=16.93265 GPa, νxy = -0.2207, νxz= -0.5730, νyx= -0.71717, νyz=0.87013, νzx= -0.33097 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016