Serine/threonine protein phosphatases and synaptic inhibition regulate the expression of cholinergic-dependent plateau potentials.
نویسندگان
چکیده
We previously identified cholinergic-dependent plateau potentials (PPs) in CA1 pyramidal neurons that were intrinsically generated by interplay between voltage-gated calcium entry and a Ca(2+)-activated nonselective cation conductance. In the present study, we examined both the second-messenger pathway and the role of synaptic inhibition in the expression of PPs. The stimulation of m1/m3 cholinergic receptor subtypes and G-proteins were critical for activating PPs because selective receptor antagonists (pirenzepine, hexahydro-sila-difenidol hydrochloride, 4-diphenylacetoxy-N-methylpiperidine methiodide) and intracellular guanosine-5'-O-(2-thiodiphosphate) prevented PP generation in carbachol. Intense synaptic stimulation occasionally activated PPs in the presence of oxytremorine M, a cholinergic agonist with preference for m1/m3 receptors. PPs were consistently activated by synaptic stimulation only when oxytremorine M was combined with antagonists at both GABA(A) and GABA(B) receptors. These latter data indicate an important role for synaptic inhibition in preventing PP generation. Both intrinsically generated and synaptically activated PPs could not be elicited following inhibition of serine/threonine protein phosphatases by calyculin A, okadaic acid, or microcystin-L, suggesting that muscarinic-induced dephosphorylation is necessary for PP generation. PP genesis was also inhibited following irreversible thiophosphorylation by intracellular perfusion with ATP-gamma-S. These data indicate that the expression of cholinergic-dependent PPs requires protein phosphatase-induced dephosphorylation via G-protein-linked m1/m3 receptor(s). Moreover, synaptic inhibition via both GABA(A) and GABA(B) receptors normally prevents the synaptic activation of PPs. Understanding the regulation of PPs should provide clues to the role of this regenerative potential in both normal activity and pathophysiological processes such as epilepsy.
منابع مشابه
Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity.
Synaptic plasticity in hippocampal CA1 pyramidal cells requires a delicate balance of protein kinase and protein phosphatase activities. Long-term potentiation (LTP) after intense synaptic stimulation often results from postsynaptic Ca 2 influx via NMDAtype glutamate receptors and activation of multiple protein kinases. In contrast, weaker synaptic stimulation paradigms can induce long-term dep...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملOkadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia.
Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate serine/threonine protein phosphatase activity, thereby inhibiting relevant protein phosphatases uniquely during...
متن کاملPartial inhibition of PP1 alters bidirectional synaptic plasticity in the hippocampus.
Synaptic plasticity is an important cellular mechanism that underlies memory formation. In brain areas involved in memory such as the hippocampus, long-term synaptic plasticity is bidirectional. Major forms of bidirectional plasticity encompass long-term potentiation (LTP), LTP reversal (depotentiation) and long-term depression (LTD). Protein kinases and protein phosphatases are important playe...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 85 3 شماره
صفحات -
تاریخ انتشار 2001