Parallel Genetic Algorithm Implementation for BOINC

نویسندگان

  • Malek Smaoui
  • Viet Huy Nguyen
  • Marc Garbey
چکیده

In this paper we present our implementation of a Genetic Algorithm on the BOINC volunteer computing platform. Our main objective is to construct a computational framework that applies to the optimum design problem of prairies. This ecology problem is characterized by a large parameter set, noisy multiobjective functions, and the presence of multiple local optima that reflects biodiversity. Our approach consists in enhancing the iterative (synchronous) master-worker genetic algorithm to overcome the limitations of volatile and unreliable distributed computing resources considering a sufficiently large number of volunteer computers. Though volunteer computing is known to be much less performing than parallel environments such as clusters and grids, our GA solution turns to exhibit competitive performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

متن کامل

Association Rules Extraction from Big Data Using BOINC-based Enterprise Desktop Grid

The paper describes an approach to association rules extraction from huge data sets using BOINC-based Enterprise Desktop Grid. An algorithm of data analysis and a native BOINC-based application are presented. Several experiments with the aim of validation and performance evaluation of the algorithm implementation were performed. The results of the experiments show that the approach is promising...

متن کامل

Static Task Allocation in Distributed Systems Using Parallel Genetic Algorithm

Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...

متن کامل

Optimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm

Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable ...

متن کامل

A New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm

This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009