Cranial vault reconstruction with bone morphogenetic protein, calcium phosphate, acellular dermal matrix, and calcium alginate in mice.
نویسندگان
چکیده
PURPOSE To evaluate experimental cranial vault reconstructions, by combining bone morphogenetic protein type 2 (BMP-2) and different matrices. METHODS Fourty-nine animals were initially included (seven per group). We designed an experimental, open, prospective and comparative study, divided in seven groups: 1 - BMP-2+calcium phosphate (BT); 2 - BMP-2+acellular dermal matrix (BM); 3 - BMP-2+calcium alginate (BA); 4 - TCP; 5 - MDM; 6 - ALG; 7 - Bone autograft (BAG). A bone failure was created in left parietal bone of adult male mice. At the same procedure reconstruction was performed. After five weeks, animals were sacrificed, and reconstruction area was removed to histological analysis. After exclusion due to death or infection, thirty-eight animals were evaluated (BT=5; BM=6; BA=6; TCP=7; MDM=3; ALG=6; BAG=5). RESULTS A higher incidence of infection has occurred in MDM group (57%, P=0.037). In cortical fusion, groups BAG, TCP, and BMP-2+TCP (BT) obtained the best scores, comparing to the others (P=0.00846). In new bone formation, groups BT, BAG, and TCP have presented the best scores (P=0.00835). When neovascularization was considered, best groups were BMP-2+MDM (BM), BMP-2+ALG (BA), TCP, and MDM (P=0.001695). BAG group was the best in bone marrow formation, followed by groups BT and TCP (P=0.008317). CONCLUSIONS Bone morphogenetic protein type 2 increased bone regeneration in experimental skull reconstruction, especially when combined to calcium phosphate. Such association was even comparable to bone autograft, the gold-standard treatment, in some histological criteria.
منابع مشابه
Ultrastructural observation of calcification preceding new bone formation induced by demineralized bone matrix gelatin.
Demineralized bone matrix gelatin (BMG) was implanted into the skeletal muscle of Sprague-Dawley rats, and the resulting ultrastructural changes of the BMG were examined 3, 5, 7, 10, 15 and 20 days later. Most of the implanted BMG became calcified 7-20 days after implantation. Calcification ('acellular mineral deposition') was first observed as needle-shaped crystalline deposits in the BMG matr...
متن کامل* Programmed Platelet-Derived Growth Factor-BB and Bone Morphogenetic Protein-2 Delivery from a Hybrid Calcium Phosphate/Alginate Scaffold.
Bone tissue engineering requires the upregulation of several regenerative stages, including a critical early phase of angiogenesis. Previous studies have suggested that a sequential delivery of platelet-derived growth factor (PDGF) to bone morphogenetic protein-2 (BMP-2) could promote angiogenic tubule formation when delivered to in vitro cocultures of human umbilical vein endothelial cells (HU...
متن کاملA Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect
A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue eng...
متن کاملSustained Release of BMP-2 in Bioprinted Alginate for Osteogenicity in Mice and Rats
The design of bioactive three-dimensional (3D) scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2) influences osteogenicity of tissue engin...
متن کاملA clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling
In this study, we investigated a clinically relevant model of in vivo ectopic bone formation utilizing human periosteum derived cells (HPDCs) seeded in a Collagraft carrier and explored the mechanisms by which this process is driven. Bone formation occurred after eight weeks when a minimum of one million HPDCs was loaded on Collagraft carriers and implanted subcutaneously in NMRI nu/nu mice. De...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta cirurgica brasileira
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2014