Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture.
نویسندگان
چکیده
Neuritic regression and cell death (neurodegeneration) are common features of both normal nervous system development and neurodegenerative disorders. Growth factors and excitatory amino acid neurotransmitters have been suggested independently to play roles in neurodegenerative processes. The present study investigated the combined effects of fibroblast growth factor (FGF) and glutamate on the development and degeneration of cultured hippocampal neurons. Consistent with previous data, we found that FGF, but not NGF, promoted neuronal survival and dendritic outgrowth. In contrast, a low level of glutamate (50 microM) caused a reduction in dendritic outgrowth, and high levels (100 microM-1 mM) reduced neuronal survival in a dose-dependent manner. When cultures were maintained in the presence of FGF, there was a striking reduction in neuronal death normally caused by 100-500 microM glutamate. FGF raised the threshold for glutamate neurotoxicity. FGF also antagonized the outgrowth-inhibiting actions of glutamate. Measurements of intracellular calcium levels with fura-2 demonstrated a direct relationship between glutamate-induced rises in intracellular calcium and neurodegeneration. FGF reduced the glutamate-induced increases in intracellular calcium levels. However, when cultures were pretreated with the RNA synthesis inhibitor actinomycin D or with the protein synthesis inhibitor cycloheximide, FGF did not prevent glutamate-induced increases in intracellular calcium or neurodegeneration. Taken together, these results suggest that (1) interactions between growth factors and neurotransmitters may be important in brain development; (2) imbalances in these systems may lead to neurodegeneration; and (3) cellular calcium-regulating systems may be a common focus of growth factor and neurotransmitter actions.
منابع مشابه
Roles for mitotic history in the generation and degeneration of hippocampal neuroarchitecture.
The mechanisms regulating the highly ordered neuroarchitecture of the mammalian brain are largely unknown. The present study took advantage of hippocampal pyramidal-like neurons that arose from a common progenitor cell in cell culture (sister neurons) to ascertain the contribution of intrinsic factors to both the generation and degeneration of neuroarchitecture. Sister neurons were similar in o...
متن کاملAtrazine-induced Hippocampal Degeneration and Behavioral Deficits in Wistar Rats: Mitigative role of avocado oil
Background: Glutamate is essential to learning and memory as an excitatory neurotransmitter. This study evaluated the atrazine effect on the hippocampus and examined the mitigative role of avocado oil against the neuronal degeneration and behavioral deficits in Wistar rats. Methods: Fifty adult male Wistar rats were divided into four groups of ten. Group 1 (controls) received 0.5 ml distilled ...
متن کاملP-128: Fibroblast Growth Factor Improves Oocyte Maturation in Vitrified-Thawed Mouse Follicles
Background: The fibroblast growth factors (FGF-4) are a group of heparin-binding single chain polypeptides that play a pivotal role in development, cell growth, tissue repairing and transformation. The aim of this study is to improve development and maturation outcome of vitrified mouse pre-antral follicle by adding of fibroblast growth factor (FGF) into medium culture. Materials and Methods: P...
متن کاملNeurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function.
Previous studies have shown that several different neurotrophic factors can prevent death of cortical and hippocampal neurons induced by excitotoxic and oxidative insults in cell culture and in vivo. Because neuronal degeneration may be initiated by alterations occurring in synaptic compartments in disorders ranging from Alzheimer's disease to stroke, we tested the hypothesis that neurotrophic ...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 11 شماره
صفحات -
تاریخ انتشار 1989