Phenotype-Genotype Correlations and Estimated Carrier Frequencies of Primary Hyperoxaluria.
نویسندگان
چکیده
Primary hyperoxaluria (PH) is a rare autosomal recessive disease characterized by oxalate accumulation in the kidneys and other organs. Three loci have been identified: AGXT (PH1), GRHPR (PH2), and HOGA1 (PH3). Here, we compared genotype to phenotype in 355 patients in the Rare Kidney Stone Consortium PH registry and calculated prevalence using publicly available whole-exome data. PH1 (68.4% of families) was the most severe PH type, whereas PH3 (11.0% of families) showed the slowest decline in renal function but the earliest symptoms. A group of patients with disease progression similar to that of PH3, but for whom no mutation was detected (11.3% of families), suggested further genetic heterogeneity. We confirmed that the AGXT p.G170R mistargeting allele resulted in a milder PH1 phenotype; however, other potential AGXT mistargeting alleles caused more severe (fully penetrant) disease. We identified the first PH3 patient with ESRD; a homozygote for two linked, novel missense mutations. Population analysis suggested that PH is an order of magnitude more common than determined from clinical cohorts (prevalence, approximately 1:58,000; carrier frequency, approximately 1:70). We estimated PH to be approximately three times less prevalent among African Americans than among European Americans because of a limited number of common European origin alleles. PH3 was predicted to be as prevalent as PH1 and twice as common as PH2, indicating that PH3 (and PH2) cases are underdiagnosed and/or incompletely penetrant. These results highlight a role for molecular analyses in PH diagnostics and prognostics and suggest that wider analysis of the idiopathic stone-forming population may be beneficial.
منابع مشابه
Primary hyperoxaluria: from gene defects to designer drugs?
Primary hyperoxaluria is a name given to a group of hereditary disorders characterized by increased synthesis and excretion of the metabolic end-product oxalate, and deposition of insoluble calcium oxalate (CaOx) in the kidney and urinary tract [1]. Only two of the primary hyperoxalurias have been well characterized—type 1 (PH1, MIM 259900) and type 2 (PH2, MIM260000). PH1 is caused by a defici...
متن کاملS81L and G170R mutations causing Primary Hyperoxaluria type I in homozygosis and heterozygosis: an example of positive interallelic complementation
Primary Hyperoxaluria type I (PH1) is a rare disease due to the deficit of peroxisomal alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal-5'-phosphate (PLP) enzyme present in humans as major (Ma) and minor (Mi) allele. PH1-causing mutations are mostly missense identified in both homozygous and compound heterozygous patients. Until now, the pathogenesis of PH1 has been only studi...
متن کاملExtreme intrafamilial variability of Saudi brothers with primary hyperoxaluria type 1
BACKGROUND Primary hyperoxaluria type 1 (PH1) is characterized by progressive renal insufficiency culminating in end-stage renal disease, and a wide range of clinical features related to systemic oxalosis in different organs. It is caused by autosomal recessive deficiency of alanine:glyoxylate aminotransferase due to a defect in AGXT gene. CASE REPORT Two brothers (one 6 months old; the other...
متن کاملHyperoxalurias and their treatment
Hyperoxaluria is characterized by an increased in excretion of oxalate by kidney.There are two distinct clinical expressions of hyperoxaluria, named primary and secondary hyperoxaluria. Primary hyperoxaluria is a genetic disorder due to defective enzyme activity .In contrast , secondary hyperoxaluria , is caused by increased dietary ingestion of oxalate or oxalate precursors. There are three ma...
متن کاملPolymorphisms in Melanocortin Receptor 1 Gene in Goat Breeds: A Window for Coat Color Controling Mechanism
The broad goal of this research was to examine the nature of the Melanocortin receptor 1 (MC1R) locus on the coat color phenotype of seven goat breeds with different color coat. Blood samples were collected from five Iranian indigenous (Khalkhal, Markhor, Naeini, Najdi and Tali) and two exotic (Cashmere and Saanen) goat breeds. Polymerase chain reaction restriction fragment length polymorphism ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 26 10 شماره
صفحات -
تاریخ انتشار 2015