Mucosally delivered Salmonella typhi expressing the Yersinia pestis F1 antigen elicits mucosal and systemic immunity early in life and primes the neonatal immune system for a vigorous anamnestic response to parenteral F1 boost.

نویسندگان

  • Karina Ramirez
  • Alejandra V E Capozzo
  • Scott A Lloyd
  • Marcelo B Sztein
  • James P Nataro
  • Marcela F Pasetti
چکیده

Neonates respond poorly to conventional vaccines. This has been attributed, in part, to the immaturity of neonatal dendritic cells that lack full capacity for Ag presentation and T cell stimulation. We engineered an attenuated Salmonella Typhi strain to express and export the F1 Ag of Y. pestis (S. Typhi(F1)) and investigated its immunogenicity early in life using a heterologous prime-boost regimen. Newborn mice primed intranasally with a single dose of S. Typhi(F1) elicited mucosal Ab- and IFN-gamma-secreting cells 1 wk after immunization. They also developed a potent and fast anamnestic response to a subsequent parenteral boost with F1-alum, which surpassed those of mice primed and boosted with S. Typhi(F1) or F1-alum. Neonatal priming with S. Typhi(F1), as opposed to priming with F1-alum, resulted in a more balanced IgG2a/IgG1 profile, enhanced avidity maturation and stimulation of B memory cells, and strong Th1-type cell-mediated immunity. S. Typhi(F1) enhanced the activation and maturation of neonatal CD11c+ dendritic cells, shown by increased expression of CD80, CD86, CD40, and MHC-II cell surface markers and production of proinflammatory cytokines IL-12, TNF-alpha, IL-6, and MCP-1. S. Typhi(F1)-stimulated neonatal DC had improved capacity for Ag presentation and T cell stimulation in vitro and induced F1-specific CD4+ and CD8+ T cell responses when adoptively transferred to newborn mice. Mucosal immunization with S. Typhi expressing a foreign Ag effectively primes the neonatal immune system for potent, fast, and broader responses to a parenteral Ag boost. Such a strategy can prevent infectious diseases, including those considered biowarfare threats, early in life.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak anamnestic responses of inbred mice to Yersinia F1 genetic vaccine are overcome by boosting with F1 polypeptide while outbred mice remain nonresponsive.

The role of immunity to intracellular Ags in resistance to infection by Yersinia is not well established. The enteropathogenic bacteria Yersinia pseudotuberculosis and Yersinia enterocolitica actively translocate Ags to the cytosol of eukaryotic cells. Whereas Yersinia pestis does not always express the requisite cellular adhesins, results have varied as to whether similar cytosolic translocati...

متن کامل

Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers.

The development of effective vaccines for neonates and very young infants has been impaired by their weak, short-lived, and Th-2 biased responses and by maternal antibodies that interfere with vaccine take. We investigated the ability of Salmonella enterica serovars Typhi and Typhimurium to mucosally deliver tetanus toxin fragment C (Frag C) as a model antigen in neonatal mice. We hypothesize t...

متن کامل

A nasal interleukin-12 DNA vaccine coexpressing Yersinia pestis F1-V fusion protein confers protection against pneumonic plague.

Previous studies have shown that mucosal application of interleukin-12 (IL-12) can stimulate elevated secretory immunoglobulin A (IgA) responses. Since possible exposure to plague is via Yersinia pestis-laden aerosols that results in pneumonic plague, arming both the mucosal and systemic immune systems may offer an added benefit for protective immunity. Two bicistronic plasmids were constructed...

متن کامل

A comparison of immunogenicity and protective immunity against experimental plague by intranasal and/or combined with oral immunization of mice with attenuated Salmonella serovar Typhimurium expressing secreted Yersinia pestis F1 and V antigen

We investigated the relative immunogenicity and protective efficacy of recombinant X85MF1 and X85V strains of DeltacyaDeltacrpDeltaasd-attenuated Salmonella Typhimurium expressing, respectively, secreted Yersinia pestis F1 and V antigens, following intranasal (i.n.) or i.n. combined with oral immunization for a mouse model. A single i.n. dose of 10(8) CFU of X85MF1 or X85V induced appreciable s...

متن کامل

Yersinia pestis IS1541 transposition provides for escape from plague immunity.

Yersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity. Here we asked whether Y. pestis generates mutations tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 182 2  شماره 

صفحات  -

تاریخ انتشار 2009