Well-posed fuzzy extensions of ill-posed linear equality systems
نویسنده
چکیده
Linear equality systems with fuzzy parameters and crisp variables defined by the Zadeh’s extension principle are called possibilistic linear equality systems. This study focuses on the problem of stability (with respect to small changes in the membership function of fuzzy parameters) of the solution in these systems.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملF-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM
We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...
متن کاملOn efficiency of critical-component method for solving singular and ill-posed systems of linear algebraic equations
Results are expounded for the investigation of efficiency of the critical-component direct method for solving degenerate and ill-posed systems of linear algebraic equations.
متن کاملA Dynamical Tikhonov Regularization for Solving Ill-posed Linear Algebraic Systems
The Tikhonov method is a famous technique for regularizing ill-posed linear problems, wherein a regularization parameter needs to be determined. This article, based on an invariant-manifold method, presents an adaptive Tikhonov method to solve ill-posed linear algebraic problems. The new method consists in building a numerical minimizing vector sequence that remains on an invariant manifold, an...
متن کاملArxiv:math-ph/0008011v3 17 Nov 2000 Linear Ill-posed Problems and Dynamical Systems * †
A new approach to solving linear ill-posed problems is proposed. The approach consists of solving a Cauchy problem for a linear operator equation and proving that this problem has a global solution whose limit at infinity solves the original linear equation.
متن کامل