Immunizing conic quadratic optimization problems against implementation errors
نویسندگان
چکیده
We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be useful for other purposes. We extend the result to the case in which the uncertainty region is the intersection of two convex quadratic inequalities. The robust counterpart for this case is also equivalent to a system of conic quadratic constraints. Results for convex conic quadratic constraints with implementation error are also given. We conclude with showing how the theory developed can be applied in robust linear optimization with jointly uncertain parameters and implementation errors, in sequential robust quadratic programming, in Taguchi’s robust approach, and in the adjustable robust counterpart.
منابع مشابه
On implementing a primal-dual interior-point method for conic quadratic optimization
Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic quadratic optimization problems can ...
متن کاملA New Mathematical Approach based on Conic Quadratic Programming for the Stochastic Time-Cost Tradeoff Problem in Project Management
In this paper, we consider a stochastic Time-Cost Tradeoff Problem (TCTP) in PERT networks for project management, in which all activities are subjected to a linear cost function and assumed to be exponentially distributed. The aim of this problem is to maximize the project completion probability with a pre-known deadline to a predefined probability such that the required additional cost is min...
متن کاملCompletely positive reformulations for polynomial optimization
Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well established body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dua...
متن کاملB-475 Lagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems
In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the cone used is not...
متن کاملLagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems
In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the cone used is not...
متن کامل