Stochastic model predictive control of LPV systems via scenario optimization

نویسندگان

  • Giuseppe Carlo Calafiore
  • Lorenzo Fagiano
چکیده

A stochastic receding-horizon control approach for constrained Linear Parameter Varying discrete-time systems is proposed in this paper. It is assumed that the time-varying parameters have stochastic nature and that the system’s matrices are bounded but otherwise arbitrary nonlinear functions of these parameters. No specific assumption on the statistics of the parameters is required. By using a randomization approach, a scenario-based finite-horizon optimal control problem is formulated, where only a finite number M of sampled predicted parameter trajectories (’scenarios’) are considered. This problem is convex and its solution is a-priori guaranteed to be probabilistically robust, up to a user-defined probability level p. The p level is linked to M by an analytic relationship, which establishes a tradeoff between computational complexity and robustness of the solution. Then, a receding horizon strategy is presented, involving the iterated solution of a scenario-based finite-horizon control problem at each time step. Our key result is to show that the state trajectories of the controlled system reach a terminal positively invariant set in finite time, either deterministically, or with probability no smaller than p. The features of the approach are illustrated by a numerical example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[Proceeding] Model Predictive Control of stochastic LPV Systems via Random Convex Programs

This paper considers the problem of stabilization of stochastic Linear Parameter Varying (LPV) discrete time systems in the presence of convex state and input constraints. By using a randomization approach, a convex finite horizon optimal control problem is derived, even when the dependence of the system’s matrices on the time-varying parameters is nonlinear. This convex problem can be solved e...

متن کامل

Particle Model Predictive Control: Tractable Stochastic Nonlinear Output-Feedback MPC

We combine conditional state density construction with an extension of the Scenario Approach for stochastic Model Predictive Control to nonlinear systems to yield a novel particle-based formulation of stochastic nonlinear output-feedback Model Predictive Control. Conditional densities given noisy measurement data are propagated via the Particle Filter as an approximate implementation of the Bay...

متن کامل

Output feedback model predictive control for LPV systems using parameter-dependent Lyapunov function

In this paper, we consider a robust dynamic output feedback model predictive controller (MPC) design for linear parameter varying (LPV) systems. According to the proposed MPC algorithm, the control law is computed based on linear matrix inequality (LMI) at each sampling time by solving convex optimization problem. Also, a new parameter-dependent Lyapunov function is proposed to get a less conse...

متن کامل

Stochastic Nonlinear Model Predictive Control of an Uncertain Batch Polymerization Reactor

This paper presents a stochastic nonlinear model predictive control technique for discrete-time uncertain nonlinear systems with particular focus on the batch polymerization reactor application. We consider a nonlinear dynamical system subject to chance constraints (i.e. need to be satisfied probabilistically up to a pre-assigned level). This formulation leads to a finite-horizon chance-constra...

متن کامل

OPTIMIZATION-BASED MONITORING-SUPPORTED CALIBRATION OF A THERMAL PERFORMANCE SIMULATION MODEL

Building performance simulation is being increasingly deployed beyond the building design phase to support efficient building operation. Specifically, the predictive feature of the simulation-assisted building systems control strategy provides distinct advantages in view of building systems with high latency and inertia. Such advantages can be exploited only if model predictions can be relied u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2013