OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo

نویسندگان

  • Xiao Zhi
  • Wei Chen
  • Fei Xue
  • Chao Liang
  • Bryan Wei Chen
  • Yue Zhou
  • Liang Wen
  • Liqiang Hu
  • Jian Shen
  • Xueli Bai
  • Tingbo Liang
چکیده

Despite its relative rarity, pancreatic ductal adenocarcinoma (PDAC) accounts for a large percentage of cancer deaths. In this study, we investigated the in vitro efficacy of OSI-027, a selective inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2, to treat PDAC cell lines alone, and in combination with gemcitabine (GEM). Similarly, we tested the efficacy of these two compounds in a xenograft mouse model of PDAC. OSI-027 significantly arrested cell cycle in G0/G1 phase, inhibited the proliferation of Panc-1, BxPC-3, and CFPAC-1 cells, and downregulated mTORC1, mTORC2, phospho-Akt, phospho-p70S6K, phospho-4E-BP1, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in these cells. Moreover, OSI-027 also downregulated multidrug resistance (MDR)-1, which has been implicated in chemotherapy resistance in PDAC cells and enhanced apoptosis induced by GEM in the three PDAC cell lines. When combined, OSI-027 with GEM showed synergistic cytotoxic effects both in vitro and in vivo. This is the first evidence of the efficacy of OSI-027 in PDAC and may provide the groundwork for a new clinical PDAC therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRD4 promotes pancreatic ductal adenocarcinoma cell proliferation and enhances gemcitabine resistance.

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive carcinoma with a poor prognosis. To date, there is no effective treatment for this fatal disease. The manipulation of epigenetic proteins, such as BRD4, has recently emerged as an alternative therapeutic strategy. Our objective was to analyze the effect of BRD4 on the cell progression and chemoresistance of PDAC and the novel mechan...

متن کامل

Lithium Inhibits Tumorigenic Potential of PDA Cells through Targeting Hedgehog-GLI Signaling Pathway

Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA) and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β) that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downst...

متن کامل

Cholesterol esterification inhibition and gemcitabine synergistically suppress pancreatic ductal adenocarcinoma proliferation

Recent advances have recognized metabolic reprogramming as an underlying mechanism for cancer drug resistance. However, the role of cholesterol metabolism in drug resistance remain elusive. Herein, we report an increased accumulation of cholesteryl ester in gemcitabine-resistant pancreatic ductal adenocarcinoma (PDAC) cells. A potent inhibitor of acyl-CoA cholesterol acyltransferase-1 (ACAT-1),...

متن کامل

MicroRNA-33a-mediated downregulation of Pim-3 kinase expression renders human pancreatic cancer cells sensitivity to gemcitabine

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with less than 5% of patients surviving 5 years beyond diagnosis. Systemic therapies, particularly gemcitabine, have a modest clinical benefit, but chemoresistance limits their efficacy. Here, we demonstrate that plasma miR-33a levels positively correlated with miR-33a levels in tumor tissues of patients with PDAC and ar...

متن کامل

The FAK scaffold inhibitor C4 disrupts FAK-VEGFR-3 signaling and inhibits pancreatic cancer growth

Even with successful surgical resection and perioperative chemotherapy and radiation, pancreatic ductal adenocarcinoma (PDA) has a high incidence of recurrence. Tumor cell survival depends on activation of signaling pathways that suppress the apoptotic stimuli of invasion and metastasis. Focal adhesion kinase (FAK) is a critical signaling molecule that has been implicated in tumor cell survival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015