Intranasal immunization with W805EC adjuvanted recombinant RSV rF-ptn enhances clearance of respiratory syncytial virus in a mouse model
نویسندگان
چکیده
Respiratory Syncytial Virus (RSV) is a ubiquitous virus that infects almost all people by age two and is a major source of respiratory illness in infants, the elderly and others with compromised immune systems. Currently there is no available vaccine. Prior efforts using formalin-inactivated RSV (FI-RSV) were associated with enhanced respiratory disease upon viral exposure following clinical vaccine trials. Several researchers and pharmaceutical companies have utilized vector-associated live attenuated RSV vaccines in pre-clinical and clinical studies. Another attractive approach, however, is a subunit vaccine which would be easier to produce and quality control. Our group has previously demonstrated in a murine model of infection that intranasal immunization with nanoemulsion-inactivated and adjuvanted RSV induces humoral and cellular immune responses, resulting in protection against RSV infection. The present studies characterize the immune responses elicited by intranasal RSV F protein adjuvanted with nanoemulsion. Intranasal application of nanoemulsion adjuvanted F protein induced a rapid and robust systemic and mucosal antibody response, as well as protection against subsequent RSV challenge. Importantly, RSV challenge in immunized animals did not elicit airway hyper-reactivity, a Th2-skewed immune response or immunopathology associated with hypersensitivity reactions with formalin-inactivated vaccine. These results suggest that RSV F protein adjuvanted with nanoemulsion may be a good mucosal vaccine candidate. Formulating RSV F protein in nanoemulsion creates a well-defined and well-controlled vaccine that can be delivered intranasally to induce T cell mediated immunity without inducing enhanced disease associated with the mouse model of FI-RSV vaccination and infection.
منابع مشابه
A Novel Inactivated Intranasal Respiratory Syncytial Virus Vaccine Promotes Viral Clearance without Th2 Associated Vaccine-Enhanced Disease
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in young children worldwide, and no vaccine is currently available. Inactivated RSV vaccines tested in the 1960's led to vaccine-enhanced disease upon viral challenge, which has undermined RSV vaccine development. RSV infection is increasingly being recognized as an important pathogen in the elderly, ...
متن کاملNonreplicating vaccines can protect african green monkeys from the memphis 37 strain of respiratory syncytial virus.
BACKGROUND We evaluated the immunological responses of African green monkeys immunized with multiple F and G protein-based vaccines and assessed protection against the Memphis 37 strain of respiratory syncytial virus (RSV). METHODS Monkeys were immunized with F and G proteins adjuvanted with immunostimulatory (CpG) oligodeoxyribonucleotides admixed with either Alhydrogel or ISCOMATRIX adjuvan...
متن کاملBaculovirus-based Vaccine Displaying Respiratory Syncytial Virus Glycoprotein Induces Protective Immunity against RSV Infection without Vaccine-Enhanced Disease
BACKGROUND Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract diseases in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine against RSV yet. The attachment glycoprotein (G) of RSV is a potentially important target for protective antiviral immune responses. Recombinant baculovirus has been recently emerged as a new v...
متن کاملAlum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells
Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfectio...
متن کاملEvaluation of an Intranasal Virosomal Vaccine against Respiratory Syncytial Virus in Mice: Effect of TLR2 and NOD2 Ligands on Induction of Systemic and Mucosal Immune Responses
INTRODUCTION RSV infection remains a serious threat to newborns and the elderly. Currently, there is no vaccine available to prevent RSV infection. A mucosal RSV vaccine would be attractive as it could induce mucosal as well as systemic antibodies, capable of protecting both the upper and lower respiratory tract. Previously, we reported on a virosomal RSV vaccine for intramuscular injection wit...
متن کامل