SPMT: Statistical Machine Translation with Syntactified Target Language Phrases
نویسندگان
چکیده
We introduce SPMT, a new class of statistical Translation Models that use Syntactified target language Phrases. The SPMT models outperform a state of the art phrase-based baseline model by 2.64 Bleu points on the NIST 2003 Chinese-English test corpus and 0.28 points on a humanbased quality metric that ranks translations on a scale from 1 to 5.
منابع مشابه
Statistical Machine Translation through Global Lexical Selection and Sentence Reconstruction
Machine translation of a source language sentence involves selecting appropriate target language words and ordering the selected words to form a well-formed target language sentence. Most of the previous work on statistical machine translation relies on (local) associations of target words/phrases with source words/phrases for lexical selection. In contrast, in this paper, we present a novel ap...
متن کاملImproving Pivot-Based Statistical Machine Translation Using Random Walk
This paper proposes a novel approach that utilizes a machine learning method to improve pivot-based statistical machine translation (SMT). For language pairs with few bilingual data, a possible solution in pivot-based SMT using another language as a "bridge" to generate source-target translation. However, one of the weaknesses is that some useful sourcetarget translations cannot be generated if...
متن کاملLanguage Independent Connectivity Strength Features for Phrase Pivot Statistical Machine Translation
An important challenge to statistical machine translation (SMT) is the lack of parallel data for many language pairs. One common solution is to pivot through a third language for which there exist parallel corpora with the source and target languages. Although pivoting is a robust technique, it introduces some low quality translations. In this paper, we present two language-independent features...
متن کاملمدل ترجمه عبارت-مرزی با استفاده از برچسبهای کمعمق نحوی
Phrase-boundary model for statistical machine translation labels the rules with classes of boundary words on the target side phrases of training corpus. In this paper, we extend the phrase-boundary model using shallow syntactic labels including POS tags and chunk labels. With the priority of chunk labels, the proposed model names non-terminals with shallow syntactic labels on the boundaries of ...
متن کاملTranslating Phrases in Neural Machine Translation
Phrases play an important role in natural language understanding and machine translation (Sag et al., 2002; Villavicencio et al., 2005). However, it is difficult to integrate them into current neural machine translation (NMT) which reads and generates sentences word by word. In this work, we propose a method to translate phrases in NMT by integrating a phrase memory storing target phrases from ...
متن کامل