Tensor Train decomposition on TensorFlow (T3F)

نویسندگان

  • Alexander Novikov
  • Pavel Izmailov
  • Valentin Khrulkov
  • Michael Figurnov
  • Ivan V. Oseledets
چکیده

Tensor Train decomposition is used across many branches of machine learning, but until now it lacked an implementation with GPU support, batch processing, automatic differentiation, and versatile functionality for Riemannian optimization framework, which takes in account the underlying manifold structure in order to construct efficient optimization methods. In this work, we propose a library that aims to fix it and makes machine learning papers that rely on Tensor Train decomposition easier to implement. The library includes 92% test coverage, examples, and API reference documentation.

منابع مشابه

Tensor Networks for Latent Variable Analysis. Part I: Algorithms for Tensor Train Decomposition

Decompositions of tensors into factor matrices, which interact through a core tensor, have found numerous applications in signal processing and machine learning. A more general tensor model which represents data as an ordered network of sub-tensors of order-2 or order-3 has, so far, not been widely considered in these fields, although this so-called tensor network decomposition has been long st...

متن کامل

Breaking CAPTCHAs on the Dark Web

On the Dark Web, several websites inhibit automated scraping attempts by employing CAPTCHAs. Scraping important content from a website is possible if these CAPTCHAs are solved by a web scraper. For this purpose, a Machine Learning tool is used, TensorFlow and an Optical Character Recognition tool, Tesseract to solve simple CAPTCHAs. Two sets of CATPCHAs, which are also used on some Dark Web web...

متن کامل

A Randomized Tensor Train Singular Value Decomposition

The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present work we examine generalizations of randomized matrix decomposition methods to higher order tensors in the framework of the hierarchical tensors repres...

متن کامل

A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures

Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...

متن کامل

A Constructive Algorithm for Decomposing a Tensor into a Finite Sum of Orthonormal Rank-1 Terms

Abstract. We propose a novel and constructive algorithm that decomposes an arbitrary tensor into a finite sum of orthonormal rank-1 outer factors. The algorithm, named TTr1SVD, works by converting the tensor into a rank-1 tensor train (TT) series via singular value decomposition (SVD). TTr1SVD naturally generalizes the SVD to the tensor regime and delivers elegant notions of tensor rank and err...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • CoRR

دوره abs/1801.01928  شماره 

صفحات  -

تاریخ انتشار 2018