Effects of straw mulching on maize photosynthetic characteristics and rhizosphere soil micro-ecological environment
نویسندگان
چکیده
Straw mulching is an effective measure to improve soil properties, crop growth, and yield. To further understand the advantage mechanisms of straw mulching, a field experiment with seven straw mulching levels (0 to 18 000 kg ha-1) was conducted to study the effects of straw mulching on maize (Zea mays L.) photosynthesis and rhizosphere soil microecological environment. Results showed that maize chlorophyll content was evidently affected by straw mulching, and the highest chlorophyll content was at 12 000 kg ha-1 (M4). Straw mulching could significantly improve the photosynthetic characteristics of maize, and the difference between M4 and 0 kg ha-1 (M0) was significant. There was as trend change in soil microbe quantity; it first increased and then decreased with increasing straw mulching levels, and the most suitable straw mulching level for different types of microorganisms was 9000 kg ha-1 (M3) or M4. Straw mulching significantly enhanced soil enzyme urease, invertase, dehydrogenase, and protease activities, but when the straw mulching level reached a certain level, the effect of straw mulching was no longer apparent and even had some adverse effects at straw mulching levels higher than 15 000 kg ha-1 (M5). Yield in M4 (10 186.84 kg ha-1) was the highest compared with M0 (9365.12 kg ha-1), and yield significantly increased by 8.8%. Correlation analyses indicated that the soil microbe quantity and aforementioned enzyme activities were all significantly and positively correlated with maize chlorophyll content, photosynthetic rate, and yield. Findings suggest that straw mulching can apparently increase soil microbe quantity and enzyme activities and improve crop photosynthesis and yield; the M4 level is the most reasonable straw mulching level in this study under comprehensive consideration, and a straw mulching level that is too high (over M5) will have some negative effects.
منابع مشابه
Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.
Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a me...
متن کاملResponse of Soil CO2 Emission and Summer Maize Yield to Plant Density and Straw Mulching in the North China Plain
Demand for food security and the current global warming situation make high and strict demands on the North China Plain for both food production and the inhibition of agricultural carbon emissions. To explore the most effective way to decrease soil CO2 emissions and maintain high grain yield, studies were conducted during the 2012 and 2013 summer maize growing seasons to assess the effects of w...
متن کاملSpring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau
To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water chan...
متن کاملEffects of Different Regulatory Methods on Improvement of Greenhouse Saline Soils, Tomato Quality, and Yield
To identify effective regulatory methods scheduling with the compromise between the soil desalination and the improvement of tomato quality and yield, a 3-year field experiment was conducted to evaluate and compare the effect of straw mulching and soil structure conditioner and water-retaining agent on greenhouse saline soils, tomato quality, and yield. A higher salt removing rate of 80.72% in ...
متن کاملA two-year field study with transgenic Bacillus thuringiensis maize: effects on soil microorganisms.
We evaluated the changes of some soil microbiological characteristics due to the use of transgenic maize expressing Bacillus thuringiensis (Bt) toxin. A two-year field experiment was conducted (2003 and 2004). Two lines of transgenic Bt maize that express the Cry1Ab protein (event 176 and MON 810) and their near-isogenic non-Bt lines were used. Rhizosphere and non-rhizosphere soils were collect...
متن کامل