1-Bend Upward Planar Drawings of SP-Digraphs

نویسندگان

  • Emilio Di Giacomo
  • Giuseppe Liotta
  • Fabrizio Montecchiani
چکیده

It is proved that every series-parallel digraph whose maximum vertex-degree is ∆ admits an upward planar drawing with at most one bend per edge such that each edge segment has one of ∆ distinct slopes. This is shown to be worst-case optimal in terms of the number of slopes. Furthermore, our construction gives rise to drawings with optimal angular resolution π ∆ . A variant of the proof technique is used to show that (non-directed) reduced series-parallel graphs and flat series-parallel graphs have a (non-upward) one-bend planar drawing with d 2 e distinct slopes if biconnected, and with d 2 e + 1 distinct slopes if connected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Slope Sets for Upward Planar Drawings

We prove that every set S of ∆ slopes containing the horizontal slope is universal for 1-bend upward planar drawings of bitonic st-graphs with maximum vertex degree ∆, i.e., every such digraph admits a 1-bend upward planar drawing whose edge segments use only slopes in S. This result is worst-case optimal in terms of the number of slopes, and, for a suitable choice of S, it gives rise to drawin...

متن کامل

Quasi - Upward Planarity ? ( Extended Abstract )

In this paper we introduce the quasi-upward planar drawing convention and give a polynomial time algorithm for computing a quasiupward planar drawing with the minimum number of bends within a given planar embedding. Further, we study the problem of computing quasi-upward planar drawings with the minimum number of bends of digraphs considering all the possible planar embeddings. The paper contai...

متن کامل

Upward Planar Drawings and Switch-regularity Heuristics

In this paper we present a new characterization of switch-regular upward embeddings, a concept introduced by Di Battista and Liotta in 1998. This characterization allows us to define a new efficient algorithm for computing upward planar drawings of embedded planar digraphs. If compared with a popular approach described by Bertolazzi, Di Battista, Liotta, and Mannino, our algorithm computes draw...

متن کامل

Building Blocks of Upward Planar Digraphs

The upward planarity testing problem consists of testing if a digraph admits a drawing Γ such that all edges in Γ are monotonically increasing in the vertical direction and no edges in Γ cross. In this paper we reduce the problem of testing a digraph for upward planarity to the problem of testing if its blocks admit upward planar drawings with certain properties. We also show how to test if a b...

متن کامل

Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three

An upward planar drawing of a digraph G is a planar drawing of G where every edge is drawn as a simple curve monotone in the vertical direction. A digraph is upward planar if it has an embedding that admits an upward planar drawing. The problem of testing whether a digraph is upward planar is NP-complete. In this paper we give a linear-time algorithm to test the upward planarity of a series-par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016