2 00 3 The shape of a tridiagonal pair ∗

نویسنده

  • Paul Terwilliger
چکیده

Let K denote an algebraically closed field with characteristic 0. Let V denote a vector space over K with finite positive dimension and let A,A denote a tridiagonal pair on V . We make an assumption about this pair. Let q denote a nonzero scalar in K which is not a root of unity. We assume A and A satisfy the q-Serre relations AA − [3]AAA+ [3]AAA −AA = 0, AA− [3]AAA + [3]AAA −AA = 0, where [3] = (q−q)/(q−q). Let (ρ0, ρ1, . . . , ρd) denote the shape vector for A,A . We show the entries in this shape vector are bounded above by binomial coefficients as follows: ρi ≤ ( d i ) (0 ≤ i ≤ d). We obtain this result by displaying a spanning set for V .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ul 2 00 3 Two linear transformations each tridiagonal with respect to an eigenbasis of the other ; an overview

Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A : V → V and A∗ : V → V that satisfy conditions (i), (ii) below. (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A∗ is diagonal. (ii) There exists a basis for V wit...

متن کامل

1 1 M ay 2 00 6 Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair

Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A∗ : V → V that satisfy (i) and (ii) below: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A∗ is diagonal. (ii) There exists a basis for V with respect to whi...

متن کامل

un 2 00 7 Tridiagonal pairs of Krawtchouk type

Let F denote an algebraically closed field with characteristic 0 and let V denote a vector space over F with finite positive dimension. Let A,A denote a tridiagonal pair on V with diameter d. We say that A,A has Krawtchouk type whenever the sequence {d − 2i}i=0 is a standard ordering of the eigenvalues of A and a standard ordering of the eigenvalues of A. Assume A,A has Krawtchouk type. We show...

متن کامل

2 00 8 Leonard pairs and the q - Racah polynomials ∗

Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respec...

متن کامل

2 7 A ug 2 00 4 Two linear transformations each tridiagonal with respect to an eigenbasis of the other ; an algebraic approach to the Askey scheme of orthogonal polynomials ∗ Paul Terwilliger

Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008