Sulfur as a binding agent of aggregates in explosive eruptions

نویسندگان

  • Teresa Scolamacchia
  • Donald B. Dingwell
چکیده

Understanding the mechanisms that govern ash aggregation is of critical importance in volcanology. Aggregation reduces the residence time of ash (≤2 mm) in the atmosphere strongly, by enhancing the sedimentation of finer-grained material generated during explosive eruptions. To date, experimental studies have focused on the expectation that water provides the strongest bonds between particles to form spherical to oblate aggregates (typically less than or equal to a few mm, occasionally up to several cm) preserved in pyroclastic deposits. Under water-rich conditions, individual accreted particles rarely exceed 1 mm. In pyroclastic density current deposits produced during the 1982 eruption of El Chichón, Mexico (which emitted 7.5 Tg of SO2 in the atmosphere), aggregate particles one to several millimeters, strongly cemented by a S-rich film, are common. They exhibit similarities with aggregates found in sulfur cones at Poás volcano, Costa Rica. We propose that sulfur is the binder between the silicate grains. Such a binding capacity implies a relatively fluid behavior of sulfur such as might be expected in the low viscosity temperature regime just above its melting point. If so, then the explosive ejection of sulfur during eruptions, combined with its ability to act as a cement for particles >2 mm, would imply that size fractions of lapilli can be efficiently removed from eruptive clouds a few kilometers from the vent. Such an aggregation mechanism would have important implications for pyroclast dispersal models and hazard assessment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox control of sulfur degassing in silicic magmas

Explosive eruptions involve mainly silicic magmas in which sulfur solubility and diffusivity are low. This inhibits sulfur exsolution during magma uprise as compared to more mafic magmas such as basalts. Silicic magmas can nevertheless liberate large quantities of sulfur as shown by the monitoring of SO2 in recent explosive silicic eruptions in arc settings, which invariably have displayed an e...

متن کامل

Evidence for Recent Large Magnitude Explosive Eruptions at Damavand Volcano, Iran with Implications for Volcanic Hazards

Damavand is a large dormant stratovolcano in the Alborz Mountains of northern Iran located in one of the most populous provinces, which could be adversely affected by tephra fall from Damavand. The youngest known eruption is a lava flow on the western flanks with an age of 7.3 ka. The volcanic products are predominantly porphyritic trachyandesite. Three major young pumice deposits, named here a...

متن کامل

STU DIES ON THE BINDING OF THE ALKYLATING AGENT SULFUR MUSTARD TO CALF THYMUS CHROMATIN

In this study the effect of the alkylating agent, sulfur mustard, on calf thymus chromatin was investigated using UV/Vis spectroscopy, gel electrophoresis and thermal denaturation techniques. The results show that treatment of isolated chromatin with sulfur mustard releases histones from the core particles but does not affect histone H I and nonhistone chromosomal proteins. The content of ...

متن کامل

Injection of gases into the stratosphere by explosive volcanic eruptions

[1] Explosive eruptions can inject large amounts of volcanic gases into the stratosphere. These gases may be scavenged by hydrometeors within the eruption column, and high uncertainties remain regarding the proportion of volcanic gases, which eventually reach the stratosphere. These are caused by the difficulties of directly sampling explosive volcanic eruption columns and by the lack of labora...

متن کامل

Magmatic vapor source for sulfur dioxide released during volcanic eruptions: evidence from mount pinatubo.

Sulfur dioxide (SO(2)) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO(2) released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO(2) is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2014