Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes
نویسندگان
چکیده
Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.
منابع مشابه
Interaction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملNovel Pt(II) Complex and Its Pd(II) Aanalogue. Synthesis, Characterization, Cytotoxicity and DNA-interaction
The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. This work reports the synthesis, characterization, cytotoxicity and DNA-binding studies of two cytotoxic and intercalative [M(bpy)(pyrr-dtc)]NO3 complexes (where M = Pt(II) and Pd(II), bpy = 2,2´-bipyridine and pyrr-dtc = p...
متن کاملPreparation of mammalian expression vectors incorporating site-specifically platinated-DNA lesions.
FDA-approved platinum-based anticancer drugs, cisplatin, carboplatin, and oxaliplatin, are some of the most effective chemotherapies in clinical use. The cytotoxic action of these compounds against cancer requires a combination of processes including cell entry, drug activation, DNA binding, and transcription inhibition resulting in apoptotic cell death. The drugs form Pt lesions with nuclear D...
متن کاملRedox state-dependent interaction of HMGB1 and cisplatin-modified DNA.
HMGB1, one of the most abundant nuclear proteins, has a strong binding affinity for cisplatin-modified DNA. It has been proposed that HMGB1 enhances the anticancer efficacy of cisplatin by shielding platinated DNA lesions from repair. Two cysteine residues in HMGB1 domain A form a reversible disulfide bond under mildly oxidizing conditions. The reduced domain A protein binds to a 25-bp DNA prob...
متن کامل