Constructing Simple Groups for Localizations

نویسنده

  • RÜDIGER GÖBEL
چکیده

A group homomorphism η : A → H is called a localization of A if every homomorphism φ : A→ H can be ‘extended uniquely’ to a homomorphism Φ : H → H in the sense that Φη = φ. This categorical concept, obviously not depending on the notion of groups, extends classical localizations as known for rings and modules. Moreover this setting has interesting applications in homotopy theory, see the introduction. For localizations η : A → H of (almost) commutative structures A often H resembles properties of A, e.g. size or satisfying certain systems of equalities and non-equalities. Perhaps the best known example is that localizations of finite abelian groups are finite abelian groups. This is no longer the case if A is a finite (non-abelian) group. Libman showed that An → SOn−1(R) for a natural embedding of the alternating group An is a localization if n is even and n ≥ 10. Answering an immediate question by Dror Farjoun and assuming the generalized continuum hypothesis GCH we recently showed in [12] that any non-abelian finite simple has arbitrarily large localizations. In this paper we want to remove GCH so that the result becomes valid in ordinary set theory. At the same time we want to generalize the statement for a larger class of A’s. The new techniques exploit abelian centralizers of free (non-abelian) subgroups of H which constitute a rigid system of cotorsion-free abelian groups. A known strong theorem on the existence of such abelian groups turns out to be very helpful, see [5]. Like [12], this shows (now in ZFC) that there is a proper class of distinct homotopy types which are localizations of a given Eilenberg–Mac Lane space K(A, 1) for many groups A. The Main Theorem 1.3 is also used to answer a question by Philip Hall in [13]. 1991 Mathematics Subject Classification. Primary 20E06, 20E32, 20E36, 20F06, 20F28, 20K40, 20K20; Secondary: 14F35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localizations of Groups

A group homomorphism η : A → H is called a localization of A if every homomorphism φ : A → H can be ‘extended uniquely’ to a homomorphism Φ : H → H in the sense that Φη = φ. This categorical concepts, obviously not depending on the notion of groups, extends classical localizations as known for rings and modules. Moreover this setting has interesting applications in homotopy theory, see the intr...

متن کامل

Integral Domains Whose Simple Overrings Are Intersections of Localizations

Call a domain R an sQQR-domain if each simple overring of R, i.e., each ring of the form R[u] with u in the quotient field of R, is an intersection of localizations of R. We characterize Prüfer domains as integrally closed sQQR-domains. In the presence of certain finiteness conditions, we show that the sQQR-property is very strong; for instance, a Mori sQQR-domain must be a Dedekind domain. We ...

متن کامل

NEW METHODS FOR CONSTRUCTING GENERALIZED GROUPS, TOPOLOGICAL GENERALIZED GROUPS, AND TOP SPACES

‎‎The purpose of this paper is to introduce new methods for constructing generalized groups, generalized topological groups and top spaces. We study some properties of these structures and present some relative concrete examples. Moreover, we obtain generalized groups by using of Hilbert spaces and tangent spaces of Lie groups, separately.

متن کامل

Scope and Abstraction: Two Criteria for Localized Planning

Localization is a general-purpose representational technique for part i t ioning a problem into subproblems A localized problem-solver searches several smaller search spaces, one for each subproblem Unlike most methods of part i t ioning, however, localization allows for subproblems that overlap 1 e multiple search spaces may be involved in constructing shared pieces of the overall plan In this...

متن کامل

Scope and Abstraction : Two Criteria for Localized

Localization is a general-purpose representational technique for partitioning a problem into subprob-lems. A localized problem-solver searches several smaller search spaces, one for each subproblem. Unlike most methods of partitioning, however, localiza-tion allows for subproblems that overlap { i.e. multiple search spaces may be involved in constructing shared pieces of the overall plan. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001