Computing fourth atom-bond connectivity index of v-phenylenic nanotubes and nanotori.

نویسنده

  • Mohammad Reza Farahani
چکیده

Among topological descriptors connectivity topological indices are very important and they have a prominent role in chemistry. One of them is atom-bond connectivity (ABC) index defined as ABC(G)= [formula:see text], in which degree of vertex v denoted by dv . Recently, a new version of atom-bond connectivity (ABC4) index was introduced by M. Ghorbani et.al in 2010 and is defined as ABC4(G)= [formula: see text], where Su = [formula: see text] and NG(u)=[formula: see text]. In this paper we compute this new topological index for v-phenylenic nanotube and nanotori.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Some Connectivity Indices of V-phenylenic Nanotubes and Nanotori

Let G be a simple connected graph in chemical graph theory and uν e = be an edge of G. The Randić index ( ) G χ and sum-connectivity ( ) G X of a nontrivial connected graph G are defined as the sum of the weights ν ud d 1 and ν u d d + 1 over all edges ν u e = of G, respectively. In this paper, we compute Randić ( ) G χ and sum-connectivity ( ) G X indices of V-phenylenic nanotubes and nanotori.

متن کامل

A Note on Atom Bond Connectivity Index

The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as ABC(G)  uvE (dG(u) dG(v) 2) / dG(u)dG(v) , where G d ( u ) denotes degree of vertex u. In this paper we present some bounds of this new topological index.

متن کامل

PI Polynomial of V-Phenylenic Nanotubes and Nanotori

The PI polynomial of a molecular graph is defined to be the sum X(|E(G)|-N(e)) + |V(G)|(|V(G)|+1)/2 - |E(G)| over all edges of G, where N(e) is the number of edges parallel to e. In this paper, the PI polynomial of the phenylenic nanotubes and nanotori are computed. Several open questions are also included.

متن کامل

Some inequalities for the atom-bond connectivity index of graph operations

The atom-bond connectivity index is a useful topological index in studying the stability of alkanes and the strain energy of cycloalkanes. In this paper some inequalities for the atom-bond connectivity index of a series of graph operations are presented. We also prove our bounds are tight. As an application, the ABC indices of C4 nanotubes and nanotori are computed. © 2011 Elsevier B.V. All rig...

متن کامل

On Second Atom-Bond Connectivity Index

The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G)  uvE (G ) (du dv  2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta chimica Slovenica

دوره 60 2  شماره 

صفحات  -

تاریخ انتشار 2013