Leveraging Deep Neural Networks and Knowledge Graphs for Entity Disambiguation
نویسندگان
چکیده
Entity Disambiguation aims to link mentions of ambiguous entities to a knowledge base (e.g., Wikipedia). Modeling topical coherence is crucial for this task based on the assumption that information from the same semantic context tends to belong to the same topic. This paper presents a novel deep semantic relatedness model (DSRM) based on deep neural networks (DNN) and semantic knowledge graphs (KGs) to measure entity semantic relatedness for topical coherence modeling. The DSRM is directly trained on large-scale KGs and it maps heterogeneous types of knowledge of an entity from KGs to numerical feature vectors in a latent space such that the distance between two semantically-related entities is minimized. Compared with the state-ofthe-art relatedness approach proposed by (Milne and Witten, 2008a), the DSRM obtains 19.4% and 24.5% reductions in entity disambiguation errors on two publicly available datasets respectively.
منابع مشابه
Structural Semantic Relatedness: A Knowledge-Based Method to Named Entity Disambiguation
Name ambiguity problem has raised urgent demands for efficient, high-quality named entity disambiguation methods. In recent years, the increasing availability of large-scale, rich semantic knowledge sources (such as Wikipedia and WordNet) creates new opportunities to enhance the named entity disambiguation by developing algorithms which can exploit these knowledge sources at best. The problem i...
متن کاملStrong Baselines for Simple Question Answering over Knowledge Graphs with and without Neural Networks
We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the SIMPLEQUESTIONS dataset, we find that baseline LSTMs and G...
متن کاملLearning to Explain Entity Relationships by Pairwise Ranking with Convolutional Neural Networks
Providing a plausible explanation for the relationship between two related entities is an important task in some applications of knowledge graphs, such as in search engines. However, most existing methods require a large number of manually labeled training data, which cannot be applied in large-scale knowledge graphs due to the expensive data annotation. In addition, these methods typically rel...
متن کاملModeling Mention, Context and Entity with Neural Networks for Entity Disambiguation
Given a query consisting of a mention (name string) and a background document, entity disambiguation calls for linking the mention to an entity from reference knowledge base like Wikipedia. Existing studies typically use hand-crafted features to represent mention, context and entity, which is laborintensive and weak to discover explanatory factors of data. In this paper, we address this problem...
متن کاملDeep Joint Entity Disambiguation with Local Neural Attention
We propose a novel deep learning model for joint document-level entity disambiguation, which leverages learned neural representations. Key components are entity embeddings, a neural attention mechanism over local context windows, and a differentiable joint inference stage for disambiguation. Our approach thereby combines benefits of deep learning with more traditional approaches such as graphic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1504.07678 شماره
صفحات -
تاریخ انتشار 2015