Modelling of daily fluxes of water and carbon from shortgrass steppes
نویسندگان
چکیده
A process-based model for semi-arid grassland ecosystems was developed. It is driven by standard daily meteorological data and simulates with a daily time step the seasonal course of root, aboveground green, and dead biomass. Water infiltration and redistribution in the soil, transpiration and evaporation are simulated in a coupled water budget submodel. The main plant processes are photosynthesis, allocation of assimilates between aboveground and belowground compartments, shoots and roots respiration and senescence, and litter fall. Structural parameters of the canopy such as fractional cover and LAI are also simulated. This model was validated in southwest Arizona on a semi-arid grassland site. In spite of simplifications inherent to the process-based modelling approach, this model is useful for elucidating interactions between the shortgrass ecosystem and environmental variables, for interpreting H2O exchange measurements, and for predicting the temporal variation of aboveand belowground biomass and the ecosystem carbon budget. Published by Elsevier Science B.V.
منابع مشابه
Estimation of Soil Carbon Sequestration Rate in Steppes (Case Study: Saveh Rudshur Steppes)
Since Renaissance, the natural ecosystems have fallen into a complete state ofdisarray due to the rise in the amount of carbon dioxide. Soil, the unsparing stuff, is one of themajor sources of carbon storage, and plays a paramount role in the global equilibrium ofcarbon as well as carbon sequestration. Given that Iran is benefiting from vast steppes, therate of carbon sequestration in them dese...
متن کاملEffect of water addition and nitrogen fertilization on the fluxes of CH4, CO2, NOx, and N2O following five years of elevated CO2 in the Colorado Shortgrass Steppe
An open-top-chamber (OTC) CO2 enrichment (∼720μmol mol−1) study was conducted in the Colorado shortgrass steppe from April 1997 through October 2001. Aboveground plant biomass increased under elevated CO2 and soil moisture content was typically higher than under ambient CO2 conditions. Fluxes of CH4, CO2, NOx and N2O, measured weekly year round were not significantly altered by CO2 enrichment o...
متن کاملContrasting short- and long-timescale effects of vegetation dynamics on water and carbon fluxes in water-limited ecosystems
[1] While it is generally believed that the magnitude and composition of vegetation cover influence land-atmosphere water and carbon fluxes, observations indicate that in some cases, fluxes are insensitive to land cover contrasts. This seeming inconsistency may be resolved by contrasting fluxes over short and long timescales. To explore this potential contrast, we developed and tested a model d...
متن کاملHow energy and water availability constrain vegetation water-use along the North Australian Tropical Transect
Energy and water availability were identified as the first order controls of evapotranspiration(ET) in ecohyrodrology. With a ~1,000 km precipitation gradient and distinct wet-dry climate,the North Australian Tropical Transect (NATT) was well suited for evaluating how energy andwater availabilities constrain water use by vegetation, but has not been done yet. In this study,we addressed this que...
متن کاملSoil moisture controls on canopy-scale water and carbon fluxes in an African savanna
[1] Tower-based measurements of mass and energy exchanges at the end of the growing season in central Botswana were used to evaluate functional relationships commonly applied to predict water and carbon fluxes between savanna landscapes and the atmosphere. Following a large rainfall event, daily evapotranspiration (ETdaily) exhibited an exponential decay consistent with a derived analytical exp...
متن کامل