Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models
نویسندگان
چکیده
In this paper, we propose an application of non-parametric Bayesian (NPB) models for classification of fetal heart rate (FHR) recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP) and the Chinese restaurant process with finite capacity (CRFC). Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR) recordings in a real-time setting.
منابع مشابه
Hierarchical Double Dirichlet Process Mixture of Gaussian Processes
We consider an infinite mixture model of Gaussian processes that share mixture components between nonlocal clusters in data. Meeds and Osindero (2006) use a single Dirichlet process prior to specify a mixture of Gaussian processes using an infinite number of experts. In this paper, we extend this approach to allow for experts to be shared non-locally across the input domain. This is accomplishe...
متن کاملHierarchical Dirichlet Processes
We consider problems involving groups of data, where each observation within a group is a draw from a mixture model, and where it is desirable to share mixture components between groups. We assume that the number of mixture components is unknown a priori and is to be inferred from the data. In this setting it is natural to consider sets of Dirichlet processes, one for each group, where the well...
متن کاملMaterial for “ DGEclust : differential expres - sion analysis of clustered count data ”
Introduction In this Supplementary Material, we provide the mathematical details of the algorithm we used to make posterior inferences on the generative model described by Eqs. 5. Currently, there are two major classes of methods for posterior inference in Hierarchical Dirichlet Process Mixture Models. The first class includes algorithms based on the Chinese Restaurant metaphor for representing...
متن کاملConvergence of latent mixing measures in nonparametric and mixture models
We consider Wasserstein distance functionals for assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions using v...
متن کاملSpectral Methods for the Hierarchical Dirichlet Process
The Hierarchical Dirichlet Process (HDP) is a versatile, albeit computationally expensive tool for statistical modeling of mixture models. In this paper, we introduce a spectral algorithm. We show that it is both computationally and statistically efficient. In particular, we derive the lower-order moments of the HDP and give reconstruction guarantees. Moreover, we show that hierarchical spectra...
متن کامل