Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins.

نویسندگان

  • F-X Gallat
  • A Laganowsky
  • K Wood
  • F Gabel
  • L van Eijck
  • J Wuttke
  • M Moulin
  • M Härtlein
  • D Eisenberg
  • J-P Colletier
  • G Zaccai
  • M Weik
چکیده

Hydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins

Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 3...

متن کامل

Coupling of protein and hydration-water dynamics in biological membranes.

The dynamical coupling between proteins and their hydration water is important for the understanding of macromolecular function in a cellular context. In the case of membrane proteins, the environment is heterogeneous, composed of lipids and hydration water, and the dynamical coupling might be more complex than in the case of the extensively studied soluble proteins. Here, we examine the dynami...

متن کامل

Analysis of structured and intrinsically disordered regions of transmembrane proteins.

Integral membrane proteins display two major types of transmembrane structure, helical bundles and beta barrels. The main functional roles of transmembrane proteins are the transport of small molecules and cell signaling, and sometimes these two roles are coupled. For cytosolic, water-soluble proteins, signaling and regulatory functions are often carried out by intrinsically disordered regions....

متن کامل

Intrinsically Disordered Regions May Lower the Hydration Free Energy in Proteins: A Case Study of Nudix Hydrolase in the Bacterium Deinococcus radiodurans

The proteome of the radiation- and desiccation-resistant bacterium D. radiodurans features a group of proteins that contain significant intrinsically disordered regions that are not present in non-extremophile homologues. Interestingly, this group includes a number of housekeeping and repair proteins such as DNA polymerase III, nudix hydrolase and rotamase. Here, we focus on a member of the nud...

متن کامل

Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association

Some frequently encountered deficiencies in all-atom molecular simulations, such as nonspecific protein-protein interactions being too strong, and unfolded or disordered states being too collapsed, suggest that proteins are insufficiently well solvated in simulations using current state-of-the-art force fields. To address these issues, we make the simplest possible change, by modifying the shor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2012