Bacterial Niche-Specific Genome Expansion Is Coupled with Highly Frequent Gene Disruptions in Deep-Sea Sediments

نویسندگان

  • Yong Wang
  • Jiang Ke Yang
  • On On Lee
  • Tie Gang Li
  • Abdulaziz Al-Suwailem
  • Antoine Danchin
  • Pei-Yuan Qian
چکیده

The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria

The rapidly increasing availability of complete bacterial genomes has created new opportunities for reconstructing bacterial evolution, but it has also highlighted the difficulty to fully understand the genomic and functional variations occurring among different lineages. Using the class Epsilonproteobacteria as a case study, we investigated the composition, flexibility, and function of its pan...

متن کامل

Genomes of Two New Ammonia-Oxidizing Archaea Enriched from Deep Marine Sediments

Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, ...

متن کامل

Prokaryotic community dynamics in the sedimentary microenvironment of the demosponge Tentorium semisuberites from deep Arctic waters

The sedimentary microenvironment of a sessile epibenthic deep-sea species, the small demosponge Tentorium semisuberites, has been investigated to determine its effect on the distribution, physiology and community structure of benthic bacteria and archaea. The upper sediment layers (0 to 2 cm) in the immediate sponge vicinity were characterized by an increased bacterial colonisation with cell ab...

متن کامل

Phylogenetic diversity of sediment bacteria from the deep Northeastern Pacific Ocean: a comparison with the deep Eastern Mediterranean Sea.

The variability of bacterial community composition and diversity was studied by comparative analysis of five 16S rRNA gene clone libraries from deep-sea sediments (water column depth: 4000 m) of the Northeastern Pacific Ocean and Eastern Mediterranean Sea. This is the first comparison of the bacterial communities living in these deep-sea ecosystems. The estimated chlorophyll a, organic carbon, ...

متن کامل

Diverse and novel nifH and nifH-like gene sequences in the deep-sea methane seep sediments of the Okhotsk Sea.

Diverse nifH and nifH-like gene sequences were obtained from the deep-sea surface sediments of the methane hydrate-bearing Okhotsk Sea. Some sequences formed novel families of the NifH or NifH-like proteins, of currently unresolved bacterial or archaeal origin. Comparison with other marine environments indicates environmental specificity of some of the sequences, either unique to the methane se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011