Markov-bernstein Type Inequality for Trigonometric Polynomials with Respect to Doubling Weights on [−ω, Ω]

نویسندگان

  • Tamás Erdélyi
  • Giuseppe Mastroianni
  • Vilmos Totik
  • TAMÁS ERDÉLYI
چکیده

Various important weighted polynomial inequalities, such as Bernstein, Marcinkiewicz, Nikolskii, Schur, Remez, etc. inequalities, have been proved recently by Giuseppe Mastroianni and Vilmos Totik under minimal assumptions on the weights. In most of the cases this minimal assumption is the doubling condition. Here, based on a recently proved Bernstein-type inequality by D.S. Lubinsky, we establish Markov-Bernstein type inequalities for trigonometric polynomials with respect to doubling weights on [−ω, ω]. Namely, we show the theorem below. Theorem. Let p ∈ [1,∞) and ω ∈ (0, 1/2]. Suppose W (arcsin((sinω) cos t)) is a doubling weight. Then there is a constant C depending only on p and the doubling constant L so that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic Polynomial Inequalities on Intervals and Circular Arcs

We prove the right Lax-type inequality on subarcs of the unit circle of the complex plane for complex algebraic polynomials of degree n having no zeros in the open unit disk. This is done by establishing the right Bernstein-Szegő-Videnskii type inequality for real trigonometric polynomials of degree at most n on intervals shorter than the period. The paper is closely related to recent work by B...

متن کامل

MARKOV AND BERNSTEIN TYPE INEQUALITIES IN Lp FOR CLASSES OF POLYNOMIALS WITH CONSTRAINTS

The Markov-type inequality i \Ax)\dx is proved for all real algebraic polynomials/of degree at most n having at most k, with 0 ^ k < n, zeros (counting multiplicities) in the open unit disk of the complex plane, and for all p > 0, where c(p) = c(l +/T) with some absolute constant c> 0. This inequality has been conjectured since 1983 when the L^ case of the above result was proved. It improves a...

متن کامل

Weighted inequalities for generalized polynomials with doubling weights

Many weighted polynomial inequalities, such as the Bernstein, Marcinkiewicz, Schur, Remez, Nikolskii inequalities, with doubling weights were proved by Mastroianni and Totik for the case [Formula: see text], and by Tamás Erdélyi for [Formula: see text]. In this paper we extend such polynomial inequalities to those for generalized trigonometric polynomials. We also prove the large sieve for gene...

متن کامل

Bernstein and Markov type inequalities for trigonometric polynomials on general sets∗

Bernstein and Markov-type inequalities are discussed for the derivatives of trigonometric and algebraic polynomials on general subsets of the real axis and of the unit circle. It has recently been proven by A. Lukashov that the sharp Bernstein factor for trigonometric polynomials is the equilibrium density of the image of the set on the unit circle under the mapping t → e. In this paper Lukasho...

متن کامل

Lax-type Inequalities for Polynomials on Subarcs of the Unit Circle

We prove the right Lax-type inequality on subarcs of the unit circle of the complex plane for complex algebraic polynomials of degree n having no zeros in the open unit disk. This is done by establishing the right Bernstein-Szegő-Videnskii type inequality for real trigonometric polynomials of degree at most n on intervals shorter than the period. The paper is closely related to recent work by B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013