Classification of finite dimensional simple Lie algebras in prime characteristics

نویسندگان

  • Helmut Strade
  • HELMUT STRADE
چکیده

We give a comprehensive survey of the theory of finite dimensional Lie algebras over an algebraically closed field of prime characteristic and announce that the classification of all finite dimensional simple Lie algebras over an algebraically closed field of characteristic p > 3 is now complete. Any such Lie algebra is up to isomorphism either classical or a filtered Lie algebra of Cartan type or a Melikian algebra of characteristic 5. Unless otherwise specified, all Lie algebras in this survey are assumed to be finite dimensional. In the first two sections, we review some basics of modular Lie theory including absolute toral rank, generalized Winter exponentials, sandwich elements, and standard filtrations. In Section 3, we give a systematic description of all known simple Lie algebras of characteristic p > 3 with emphasis on graded and filtered Cartan type Lie algebras. We also discuss the Melikian algebras of characteristic 5 and their analogues in characteristics 3 and 2. Our main result (Theorem 7) is stated in Section 4 which also contains formulations of several important theorems frequently used in the course of classifying simple Lie algebras. The main principles of our proof of Theorem 7, with emphasis on the rank two case, are outlined in Section 5. As suggested by the referee, we mention in Section 6 some interesting open problems related to the subject. We would like to thank the referee for careful reading and valuable comments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

The restricted simple Lie algebras are of classical or Cartan type.

The classification of the finite-dimensional restricted simple Lie algebras over an algebraically closed field F of prime characteristic p > 7 is announced. Such an algebra is either of classical type (an analogue over F of a finite-dimensional simple Lie algebra over the complex numbers) or of Cartan type (an analogue over F of one of the infinite Lie algebras of Cartan over the complex numbers).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006