Low Concentration of Rapamycin Inhibits Hemangioma Endothelial Cell Proliferation, Migration, and Vascular Tumor Formation in Mice
نویسندگان
چکیده
BACKGROUND Vascular endothelial cell excessive proliferation is the main biological behavior of hemangioma. Rapamycin regulates the growth of endothelial cells by inhibiting mammalian target of rapamycin (mTOR). Thus hemangioma accompanied by excessive mTOR activation should be sensitive to rapamycin. We aimed to illustrate the effect of low-concentration rapamycin on hemangioma and provide a safe and effective drug therapy. METHODS Mouse hemangioendothelioma endothelial cells and Nu/Nu mice were used. Rapamycin was applied in a concentration from 1 nM to 20 nM. WST-1 cell proliferation and transwell migration assays were used to analyze vascular tumor proliferation and migration in vitro. Xenograft mouse models were used to test vascular tumor growth in vivo. RESULTS Low-concentration rapamycin (1 nM) inhibited hemangioendothelioma endothelial cell proliferation and migration in vitro and vascular tumor growth in vivo. The mechanism was decreased activation of the protein kinase B/mTOR/S6 ribosomal protein (S6) signaling pathway. CONCLUSIONS Rapamycin used in vitro was analogous to low serum concentration rapamycin (7-16 nM) and also significantly inhibited the growth of hemangioma. These results demonstrate a low-toxic drug therapy for hemangioma and encourage continued development of rapamycin and its analogs for use in vascular tumor therapy.
منابع مشابه
Anti-angiogenic Effects of Metformin, an AMPK Activator, on Human Umbilical Vein Endothelial Cells and on Granulation Tissue in Rat
Objective(s)Metformin is well known for activation of AMP-activated protein kinase (AMPK). AMPK activation inhibits mammalian target of rapamycin (mTOR) as a key signaling process in cell proliferation. Recent epidemiological studies demonstrate that metformin lowers the risk for several types of cancer in diabetic patients. Concerning the critical role of angiogenesis in the incidence and prog...
متن کاملMasson’s Hemangioma of the Urethra: A Case Report
Intravascular papillary endothelial hyperplasia (IPEH) is an uncommon benign vascular disease characterized by endothelial cell proliferation and papillary formation within the lumen of blood vessels arising from an organizing thrombus. The occurrence of this uncommon lesion is about 2% of all vascular tumors. IPEH mostly occurs in the 5th decade of life, and there is no gender or age predilect...
متن کاملRapamycin Inhibits Proliferation of Hemangioma Endothelial Cells by Reducing HIF-1-Dependent Expression of VEGF
Hemangiomas are tumors formed by hyper-proliferation of vascular endothelial cells. This is caused by elevated vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we show that elevated VEGF levels produced by hemangioma endothelial cells are reduced by the mTOR inhibitor rapamycin. mTOR activates p70S6K, which controls translation of mRNA to generate prote...
متن کاملConjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells.
We have previously shown that conjugated eicosapentaenoic acid (CEPA), which is prepared by alkaline treatment of eicosapentaenoic acid and contains conjugated double bonds, suppresses tumor growth in vivo. In this earlier study, blood vessels were observed on the tumor surface in control mice, whereas in CEPA-treated mice, no such vessels were observed and the inner part of the tumor was disco...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کامل