Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging.
نویسندگان
چکیده
Three dimensional rapid large depth range imaging of the anterior segments of the human eye by an optical frequency domain imaging system is presented. The tunable source spans from 1217 to 1356 nm with an average output power of 60 mW providing a measured axial resolution of 10 mum in air based on the coherence envelope. The effective depth range is 4 mm, defined as the distance over which the sensitivity drops by 6 dB, achieved by frequency shifting the optical signal using acousto-optic modulators. The measured maximum sensitivity is 109 dB at a sample arm power of 14.7mW and A-lines rate of 43,900 per second. Images consisting of 512 depth profiles are acquired at an acquisition rate of 85 frames per second. We demonstrate an optical frequency domain imaging system capable of mapping in vivo the entire area of the human anterior segment (13.4 x 12 x 4.2 mm) in 1.4 seconds.
منابع مشابه
Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging
We describe a high-speed long-depth range optical frequency domain imaging (OFDI) system employing a long-coherence length tunable source and demonstrate dynamic full-range imaging of the anterior segment of the eye including from the cornea surface to the posterior capsule of the crystalline lens with a depth range of 12 mm without removing complex conjugate image ambiguity. The tunable source...
متن کاملImaging and Analysis of Auto-Ignition and Heavy Knock in a Full Bore Optical SI Engine
The work involved a fundamental study of auto-ignition under unusually high knock intensities for an optical spark ignition engine. The single-cylinder research engine adopted included full bore overhead optical access capable of withstanding continuous peak in-cylinder pressures of up to 150bar. A heavy knock was deliberately induced under relatively low loads using inlet air heating and a pri...
متن کاملRetinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers
We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50-580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into o...
متن کاملHigh-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth
We report a newly developed high speed 1050nm spectral domain optical coherence tomography (SD-OCT) system for imaging posterior segment of human eye. The system is capable of an axial resolution at ~10 µm in air, an imaging depth of 6.1 mm in air, a system sensitivity fall-off at ~6 dB/3mm and an imaging speed of 120,000 A-scans per second. We experimentally demonstrate the system's capability...
متن کاملElectro-Optical Design of Imaging Payload for a Remote Sensing Satellite
Remote sensing using small spacecraft arising from multi-objective economic activity problems is getting more and more developed. These satellites require very accurate pointing to specific locations of interest, with high reliability and small latency. The space borne imaging systems always attempted to achieve the highest ground resolution possible with the available technology at the given t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2007