An extremal problem for a graphic sequence to have a realization containing every 2-tree with prescribed size
نویسندگان
چکیده
A graph G is a 2-tree if G = K3, or G has a vertex v of degree 2, whose neighbors are adjacent, and G − v is a 2-tree. Clearly, if G is a 2-tree on n vertices, then |E(G)| = 2n − 3. A non-increasing sequence π = (d1, . . . , dn) of nonnegative integers is a graphic sequence if it is realizable by a simple graph G on n vertices. Yin and Li (Acta Mathematica Sinica, English Series, 25(2009)795–802) proved that if k ≥ 2, n ≥ 9 2 k + 19 2 k and π = (d1, . . . , dn)
منابع مشابه
M ar 2 00 6 An Extremal Problem On Potentially K r + 1 − ( kP 2 ⋃ tK 2 ) - graphic Sequences ∗
A sequence S is potentially Km − H-graphical if it has a realization containing a Km − H as a subgraph. Let σ(Km − H,n) denote the smallest degree sum such that every n-term graphical sequence S with σ(S) ≥ σ(Km−H,n) is potentially Km−H-graphical. In this paper, we determine σ(Kr+1−(kP2 ⋃ tK2), n) for n ≥ 4r+10, r+1 ≥ 3k+2t, k+t ≥ 2, k ≥ 1, t ≥ 0 .
متن کامل2 4 A ug 2 00 4 An extremal problem on potentially K p 1 , p 2 , . . . , p t - graphic sequences ∗
A sequence S is potentiallyKp1,p2,...,pt graphical if it has a realization containing aKp1,p2,...,pt as a subgraph, whereKp1,p2,...,pt is a complete t-partite graph with partition sizes p1, p2, ..., pt(p1 ≥ p2 ≥ ... ≥ pt ≥ 1). Let σ(Kp1,p2,...,pt, n) denote the smallest degree sum such that every n-term graphical sequence S with σ(S) ≥ σ(Kp1,p2,...,pt, n) is potentially Kp1,p2,...,pt graphical....
متن کاملA ug 2 00 4 An extremal problem on potentially K p , 1 , 1 - graphic sequences ∗
A sequence S is potentially Kp,1,1 graphical if it has a realization containing a Kp,1,1 as a subgraph, where Kp,1,1 is a complete 3partite graph with partition sizes p, 1, 1. Let σ(Kp,1,1, n) denote the smallest degree sum such that every n-term graphical sequence S with σ(S) ≥ σ(Kp,1,1, n) is potentially Kp,1,1 graphical. In this paper, we prove that σ(Kp,1,1, n) ≥ 2[((p + 1)(n − 1) + 2)/2] f...
متن کاملul 2 00 6 An extremal problem on potentially K p , 1 , 1 - graphic sequences ∗
A sequence S is potentially Kp,1,1 graphical if it has a realization containing a Kp,1,1 as a subgraph, where Kp,1,1 is a complete 3partite graph with partition sizes p, 1, 1. Let σ(Kp,1,1, n) denote the smallest degree sum such that every n-term graphical sequence S with σ(S) ≥ σ(Kp,1,1, n) is potentially Kp,1,1 graphical. In this paper, we prove that σ(Kp,1,1, n) ≥ 2[((p + 1)(n − 1) + 2)/2] f...
متن کاملAn Extremal Problem On Potentially Kr+1-H-graphic Sequences
A sequence S is potentially Kp,1,1 graphical if it has a realization containing a Kp,1,1 as a subgraph, where Kp,1,1 is a complete 3-partite graph with partition sizes p, 1, 1. Let σ(Kp,1,1, n) denote the smallest degree sum such that every n-term graphical sequence S with σ(S) ≥ σ(Kp,1,1, n) is potentially Kp,1,1 graphical. In this paper, we prove that σ(Kp,1,1, n) ≥ 2[((p + 1)(n − 1) + 2)/2] ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics & Theoretical Computer Science
دوره 17 شماره
صفحات -
تاریخ انتشار 2016