An effective strategy for the synthesis of biocompatible gold nanoparticles using danshensu antioxidant: prevention of cytotoxicity via attenuation of free radical formation.

نویسندگان

  • Libo Du
  • Xiaoxiang Miao
  • Yugang Jiang
  • Hongying Jia
  • Qiu Tian
  • Jiangang Shen
  • Yang Liu
چکیده

To suppress the cytotoxicity of gold nanoparticles (AuNPs), danshensu, a naturally occurring polyphenol antioxidant isolated from Chinese herb, was used to provide a fundamental protection layer for AuNPs, to alleviate oxidative stress and as a reducing agent to react with chloroauric acid. Besides danshensu, gum arabic was chosen as an auxiliary stabilising agent to improve the stability of AuNPs against aggregation. As expected, the prepared GA-DS-AuNPs (gum arabic-danshensu-gold nanoparticle) was remarkably stable in various buffer solutions. More interestingly, the GA-DS-AuNPs not only did not show any appreciable cytotoxicity, but also could alleviate the oxidative damage induced by AuNPs. Meanwhile, the ROS/RNS scavenging activities of GA-DS-AuNPs was evaluated by electron spin resonance spectroscopy (ESR), potentiometric nitric oxide (NO) sensor and cell confocal imaging. The results suggest that GA-DS-AuNPs might have effectively reduced the AuNPs-induced cytotoxicity and oxidative stress by downregulation of ROS/NOS production. The GA-DS-AuNPs may provide potential opportunities for the application in nanomedicine and nanobiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles

Objective(s): Biological applications of gold nanoparticles have limitations because of the toxic chemicals used in their synthesis. Curcumin can be used as reducing as well as capping agent in synthesis of GNPs to eliminate the cytotoxicity. Conjugation of curcumin to gold also helps in increasing its solubility and bioavailability. Materials and Methods: Here we report synthesis of gold nanop...

متن کامل

Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties

Purpose The leaves and flowering stem of Origanum vulgare contain essential oils, flavonoids, phenolic acids and anthocyanins. We propose a new, simple, one-pot, O. vulgare extract (OVE) mediated green synthesis method of biocompatible gold nanoparticles (AuNPs) possessing improved antioxidant, antimicrobial and plasmonic properties. Materials and methods Different concentrations of OVEs were...

متن کامل

THE GREEN SYNTHESIS OF GOLD NANOPARTICLES USING THE ETHANOL EXTRACT OF BLACK TEA AND ITS TANNIN FREE FRACTION

Abstracts: nanoparticles. All the extracts were used separately for the synthesis of gold nanoparticles through the reduction ofaqueous AuClgold ions to gold nanoparticles. The ethanol extract of black tea and its tannin free ethanol extract produced goldnanoparticles in the size ranges of 2.5-27.5 nm and 1.25-17.5 nm with an average size of 10 nm and 3 nm, respectively.The prepared colloid gol...

متن کامل

Rapid synthesis and characterization of Gold and Silver nanoparticles using exopolysaccharides and metabolites of Wesiella confusa as an antibacterial agent against Esherichia coli

Characterization and the antibacterial potential of gold (AuNPs) and silver nanoparticle (SNPs) biosynthesized greenly using exopolysaccharides (EPS) and Culture Free Supernatant (CFS) of Wesiella confusa against some multidrug resistance (MDR) E. coli was investigated. The biosynthesized nanoparticles were characterized by UV-visible spectra, Fourier Transfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotoxicology

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2013