Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket
نویسندگان
چکیده
Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform selective. Since JAK3 functions are restricted to immune cells, an isoform-selective inhibitor for JAK3 could be especially valuable to achieve clinically more useful and precise effects. However, the high degree of structural conservation makes isoform-selective targeting a challenging task. Here, we present picomolar inhibitors with unprecedented kinome-wide selectivity for JAK3. Selectivity was achieved by concurrent covalent reversible targeting of a JAK3-specific cysteine residue and a ligand-induced binding pocket. We confirmed that in vitro activity and selectivity translate well into the cellular environment and suggest that our inhibitors are powerful tools to elucidate JAK3-specific functions.
منابع مشابه
Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملComputer Aided Molecular Modeling Of Membrane Metalloprotease
Molecular modeling is a set of computational techniques for construction of 3D structure of a protein especially membrane bound proteins whose structures can not be elucidated using experimental techniques. These techniques has been applied in the study of membrane metalloproteases for comparing wild and mutated enzymes, docking inhibitors in the catalytic site and examination of binding pocket...
متن کاملDFT Studies and Topological Analyses of Electron Density on Acetophenone and Propiophenone Thiosemicarbazone Derivatives as Covalent Inhibitors of Falcipain-2, a Major Plasmodium Falciparum Cysteine Protease
Thiosemicarbazones (TSCs) possess significant antimalarial properties believed to be linked to the inhibition of major cysteine proteases, such as falcipain-2, in Plasmodium falciparum. However, the binding modes of TSCs to the active site of these enzymes are not clear. As a result of this, the nature of the bonding interactions between the active site of falcipain-2 and different derivatives ...
متن کاملDesign, Synthesis and Biological Evaluation of new 1,4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors
As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of anew group of 1,4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (...
متن کاملExploring the Binding Nature of Pyrrolidine Pocket-Dependent Interactions in the Polo-Box Domain of Polo-Like Kinase 1
BACKGROUND Over the years, a great deal of effort has been focused on the design and synthesis of potent, linear peptide inhibitors targeting the polo-like kinase 1 (Plk1), which is critically involved in multiple mitotic processes and has been established as an adverse prognostic marker for tumor patients. Plk1 localizes to its intracellular anchoring sites via its polo-box domain, and inhibit...
متن کامل