The Hilbert Space Representations for SOq(3)-symmetric Quantum Mechanics

نویسنده

  • Wolfgang Weich
چکیده

The observable algebra O of SOq(3)-symmetric quantum mechanics is generated by the coordinates Pi and Xi of momentum and position spaces (which are both isomorphic to the SOq(3)-covariant real quantum space IR 3 q). Their interrelations are determined with the quantum group covariant differential calculus. For a quantum mechanical representation of O on a Hilbert space essential self-adjointness of specified observables and compatibility of the covariance of the observable algebra with the action of the unitary continuous corepresentation operator of the compact quantum matrix group SOq(3) are required. It is shown that each such quantum mechanical representation extends uniquely to a self-adjoint representation of O. All these self-adjoint representations are constructed. As an example an SOq(3)invariant Coulomb potential is introduced, the corresponding Hamiltonian proved to be essentially self-adjoint and its negative eigenvalues calculated with the help of a q-deformed Lenz vector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of the Three-dimensional Quantum Euclidean Space by Differential Operators

The three-dimensional quantum Euclidean space is an example of a non-commutative space that is obtained from Euclidean space by q-deformation. Simultaneously, angular momentum is deformed to soq(3), it acts on the q-Euclidean space that becomes a soq(3)-module algebra this way. In this paper it is shown, that this algebra can be realized by differential operators acting on C∞ functions on R. On...

متن کامل

Multiresolution wavelet analysis of integer scale Bessel functions

We identify multiresolution subspaces giving rise via Hankel transforms to Bessel functions. They emerge as orthogonal systems derived from geometric Hilbert-space considerations, the same way the wavelet functions from a multiresolution scaling wavelet construction arise from a scale of Hilbert spaces. We study the theory of representations of the C ∗-algebra Oν+1 arising from this multiresolu...

متن کامل

ar X iv : h ep - t h / 94 07 19 5 v 2 4 M ay 1 99 5 The Euclidean Hopf Algebra U q ( e N ) and its fundamental Hilbert space representations

We construct the Euclidean Hopf algebra Uq(e ) dual of Fun(Rq >⊳SOq−1(N)) by realizing it as a subalgebra of the differential algebra Diff(Rq ) on the quantum Euclidean space Rq ; in fact, we extend our previous realization [1] of Uq−1(so(N)) within Diff(R N q ) through the introduction of q-derivatives as generators of q-translations. The fundamental Hilbert space representations of Uq(e N ) t...

متن کامل

F eb 2 00 3 Representation of Semigroups in Rigged Hilbert Spaces : Subsemigroups of the Weyl - Heisenberg Group

This paper studies how differentiable representations of certain subsemigroups of the Weyl-Heisenberg group may be obtained in suitably constructed rigged Hilbert spaces. These semigroup representations are induced from a continuous unitary representation of the Weyl-Heisenberg group in a Hilbert space. Aspects of the rigged Hilbert space formulation of time asymmetric quantum mechanics are als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994