Reviving discrete HMMs: the myth about the superiority of continuous HMMs

نویسندگان

  • Vassilios Digalakis
  • Stavros Tsakalidis
  • Leonardo Neumeyer
چکیده

Despite what is generally believed, we have recently shown that discrete-distribution HMMs can outperform continuousdensity HMMs at significantly faster decoding speeds. Recognition performance and decoding speed of the discrete HMMs are improved by using product-code Vector Quantization (VQ) and mixtures of discrete distributions. In this paper, we present efficient training and decoding algorithms for the discrete-mixture HMMs (DMHMMs). Our experimental results show that the high-level of recognition accuracy of continuous mixture-density HMMs (CDHMMs) can be maintained at significantly faster decoding speeds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi - Space Probability Distribution HMM ∗ ∗

This paper proposes a new kind of hidden Markov model (HMM) based on multi-space probability distribution, and derives a parameter estimation algorithm for the extended HMM. HMMs are widely used statistical models for characterizing sequences of speech spectra, and have been successfully applied to speech recognition systems. HMMs are categorized into discrete HMMs and continuous HMMs, which ca...

متن کامل

New Ways to Use Lvq - Codebookstogether with Hidden Markov

We introduce a novel way to employ codebooks trained by Learning Vector Quantization together with hidden Markov models. In previous work, LVQ-codebooks have been used as frame labelers. The resulting label stream has been modeled and decoded by discrete observation HMMs. We present a way to extract more information out of the LVQ stage. This is accomplished by modeling the class-wise quantizat...

متن کامل

Hilbert Space Embeddings of Hidden Markov Models

Hidden Markov Models (HMMs) are important tools for modeling sequence data. However, they are restricted to discrete latent states, and are largely restricted to Gaussian and discrete observations. And, learning algorithms for HMMs have predominantly relied on local search heuristics, with the exception of spectral methods such as those described below. We propose a nonparametric HMM that exten...

متن کامل

Discrete-Mixture HMMs-based Approach for Noisy Speech Recognition

It is well known that the application of hidden Markov models (HMMs) has led to a dramatic increase of the performance of automatic speech recognition in the 1980s and from that time onwards. In particular, large vocabulary continuous speech recognition (LVCSR) could be realized by using a recognition unit such as phones. A variety of speech characteristics can be modelled by using HMMs effecti...

متن کامل

Lvq as a Feature Transformation for Hmms

We present a new way to take advantage of the dis-criminative power of Learning Vector Quantization in combination with continuous density hidden Markov models. This is based on viewing LVQ as a non-linear feature transformation. Class-wise quantization errors of LVQ are modeled by continuous density HMMs, whereas the practice in the literature regarding LVQ/HMM hybrids is to use LVQ-codebooks ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999