Asymptotic Properties of Monte Carlo Estimators of Diffusion Processes

نویسندگان

  • Jérôme Detemple
  • René Garcia
  • Marcel Rindisbacher
چکیده

CIRANO Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d'une subvention d'infrastructure du ministère de la Recherche, de la Science et de la Technologie, de même que des subventions et mandats obtenus par ses équipes de recherche. CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and research activities are funded through fees paid by member organizations, an infrastructure grant from the Ministère de la Recherche, de la Science et de la Technologie, and grants and research mandates obtained by its research teams. ASSOCIÉ AU :. Institut de Finance Mathématique de Montréal (IFM 2). Laboratoires universitaires Bell Canada. Réseau de calcul et de modélisation mathématique [RCM 2 ]. Réseau de centres d'excellence MITACS (Les mathématiques des technologies de l'information et des systèmes complexes) Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au CIRANO afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications scientifiques. Les idées et les opinions émises sont sous l'unique responsabilité des auteurs et ne représentent pas nécessairement les positions du CIRANO ou de ses partenaires. This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. The observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent positions of CIRANO or its partners. Résumé / Abstract Dans cet article, nous étudions les distributions limites d'estimateurs de Monte Carlo de processus de diffusion. Nous examinons deux types d'estimateurs. Le premier est fondé sur un schéma d'Euler appliqué aux processus originaux, tandis que le second applique le schéma d'Euler à une transformation des processus qui stabilise la variance. Nous montrons que la transformation augmente la vitesse de convergence du schéma d'Euler. La distribution limite de cet estimateur, dérivée sous forme explicite, se révèle non centrée. Nous étudions également des estimateurs d'espérances conditionnelles de diffusions à partir d'un état initial connu. Nous caractérisons les erreurs d'approximation attendues et utilisons les expressions obtenues pour construire des estimateurs corrigés du biais de deuxième ordre. La correction de ce biais élimine la distorsion de niveau des intervalles de confiance asymptotiques et nous permet d'évaluer l'efficacité relative des estimateurs. Enfin, nous dérivons les distributions limites des estimateurs de …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Properties of Monte Carlo Estimators of Diffusion

This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. Two types of estimators are examined. The first one is based on the Euler scheme applied to the original processes; the second applies the Euler scheme to a variance-stabilizing transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. The l...

متن کامل

Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications

Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...

متن کامل

Parametric versus Nonparametric Estimation of Diffusion Processes — A Monte Carlo Comparison

In this paper, a Monte Carlo simulation is performed to investigate the finite sample properties of various estimators, based on discretely sampled observations, of the continuous-time Itô diffusion process. The simulation study aims to compare the performance of the nonparametric estimators proposed in Jiang and Knight (1996) with common parametric estimators based on those diffusion processes...

متن کامل

Estimation in ARMA models based on signed ranks

In this paper we develop an asymptotic theory for estimation based on signed ranks in the ARMA model when the innovation density is symmetrical. We provide two classes of estimators and we establish their asymptotic normality with the help of the asymptotic properties for serial signed rank statistics. Finally, we compare our procedure to the one of least-squares, and we illustrate the performa...

متن کامل

Julie Lyng Forman Statistical Inference from Diffusion Driven Models

Least squares estimators are developed for the parameters in the autocorrelation function of a stationary process. Regularity conditions for consistency and asymptotic normality are given, and optimal weights are derived. It is shown how goodness of fit and model selection can be based on the distance between empirical and fitted autocorrelations. Examples of sums of Ornstein-Uhlenbeck type pro...

متن کامل

Monte Carlo maximum likelihood estimation for discretely observed diffusion processes

This paper introduces a Monte Carlo method for maximum likelihood inference in the context of discretely observed diffusion processes. The method gives unbiased and a.s. continuous estimators of the likelihood function for a family of diffusion models and its performance in numerical examples is computationally efficient. It uses a recently developed technique for the exact simulation of diffus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003