Making Financial Trading by Recurrent Reinforcement Learning
نویسندگان
چکیده
In this paper we propose a financial trading system whose strategy is developed by means of an artificial neural network approach based on a recurrent reinforcement learning algorithm. In general terms, this kind of approach consists in specifying a trading policy based on some predetermined investor’s measure of profitability, and in setting the financial trading system while using it. In particular, with respect to the prominent literature, in this contribution: first, we take into account as measure of profitability the reciprocal of the returns weighted direction symmetry index instead of the wide-spread Sharpe ratio; second, we obtain the differential version of this measure of profitability and obtain all the related learning relationships; third, we propose a procedure for the management of drawdown-like phenomena; finally, we apply our financial trading approach to some of the major world financial market indices.
منابع مشابه
Learning to trade via direct reinforcement
We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting mo...
متن کاملReinforcement Learning for Trading
We propose to train trading systems by optimizing financial objective functions via reinforcement learning. The performance functions that we consider are profit or wealth, the Sharpe ratio and our recently proposed differential Sharpe ratio for online learning. In Moody & Wu (1997), we presented empirical results that demonstrate the advantages of reinforcement learning relative to supervised ...
متن کاملA Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem
Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM...
متن کاملReinforcement Learning for Trading Systems and Portfolios
We propose to train trading systems by optimizing financial objective functions via reinforcement learning. The performance functions that we consider as value functions are profit or wealth, the Sharpe ratio and our recently proposed differential Sharpe ratio for online learning. In Moody & Wu (1997), we presented empirical results in controlled experiments that demonstrated the advantages of ...
متن کاملApplication of stochastic recurrent reinforcement learning to index trading
A novel stochastic adaptation of the recurrent reinforcement learning (RRL) methodology is applied to daily, weekly, and monthly stock index data, and compared to results obtained elsewhere using genetic programming (GP). The data sets used have been a considered a challenging test for algorithmic trading. It is demonstrated that RRL can reliably outperform buy-and-hold for the higher frequency...
متن کامل