1-factors and Characterization of Reducible Faces of Plane Elementary Bipartite Graphs

نویسندگان

  • Andrej Taranenko
  • Aleksander Vesel
چکیده

As a general case of molecular graphs of benzenoid hydrocarbons, we study plane bipartite graphs with Kekulé structures (1-factors). A bipartite graph G is called elementary if G is connected and every edge belongs to a 1-factor of G. Some properties of the minimal and the maximal 1-factor of a plane elementary graph are given. A peripheral face f of a plane elementary graph is reducible, if the removal of the internal vertices and edges of the path that is the intersection of f and the outer cycle of G results in an elementary graph. We characterize the reducible faces of a plane elementary bipartite graph. This result generalizes the characterization of reducible faces of an elementary benzenoid graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forcing faces in plane bipartite graphs

Let denote the class of connected plane bipartite graphs with no pendant edges. A finite face s of a graphG ∈ is said to be a forcing face ofG if the subgraph ofG obtained by deleting all vertices of s together with their incident edges has exactly one perfect matching. This is a natural generalization of the concept of forcing hexagons in a hexagonal system introduced in Che and Chen [Forcing ...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

Perfect matchings and ears in elementary bipartite graphs

We give lower and upper bounds for the number of reducible ears as well as upper bounds for the number of perfect matchings in an elementary bipartite graph. An application to chemical graphs is also discussed. In addition, a method to construct all minimal elementary bipartite graphs is described.

متن کامل

Characterization of reducible hexagons and fast decomposition of elementary benzenoid graphs

A benzenoid graph is a finite connected plane graph with no cut vertices in which every interior region is bounded by a regular hexagon of a side length one. A benzenoid graph G is elementary if every edge belongs to a 1-factor of G. A hexagon h of an elementary benzenoid graph is reducible, if the removal of boundary edges and vertices of h results in an elementary benzenoid graph. We characte...

متن کامل

A characterization of 1-cycle resonant graphs among bipartite 2-connected plane graphs

It is proved that a bipartite 2-connected plane graph in which the common boundary of adjacent faces is a simple curve is 1-cycle resonant if and only if the outer face of G is alternating and each inner vertex has degree two. This extends a result from [X. Guo, F. Zhang, k-cycle resonant graphs, Discrete Math. 135 (1994) 113-120] that a hexagonal system is 1-cycle resonant if and only if it is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2012