Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem
نویسندگان
چکیده
The shoot meristem gives rise to the aerial parts of higher plants by continuously initiating new organs. The basis of this activity is its ability to maintain a pool of pluripotent stem cells, which are the ultimate source of all tissues of the shoot. In Arabidopsis plants mutant for the WUSCHEL (WUS) gene, the stem cells are misspecified and appear to undergo differentiation. Here, we show that WUS encodes a novel homeodomain protein which presumably acts as a transcriptional regulator. The pattern of WUS expression suggests that stem cells in the shoot meristem are specified by an underlying cell group which is established in the 16-cell embryo and becomes localized to its prospective domain of function by asymmetric cell divisions.
منابع مشابه
The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity
In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At the core of the network that regulates this homeostasis in Arabidopsis are the WUSCHEL (WUS) tra...
متن کاملCLAVATA-WUSCHEL signaling in the shoot meristem.
Shoot meristems are maintained by pluripotent stem cells that are controlled by CLAVATA-WUSCHEL feedback signaling. This pathway, which coordinates stem cell proliferation with differentiation, was first identified in Arabidopsis, but appears to be conserved in diverse higher plant species. In this Review, we highlight the commonalities and differences between CLAVATA-WUSCHEL pathways in differ...
متن کاملType-B ARABIDOPSIS RESPONSE REGULATORs Specify the Shoot Stem Cell Niche by Dual Regulation of WUSCHEL.
Plants are known for their capacity to regenerate the whole body through de novo formation of apical meristems from a mass of proliferating cells named callus. Exogenous cytokinin and auxin determine cell fate for the establishment of the stem cell niche, which is the vital step of shoot regeneration, but the underlying mechanisms remain unclear. Here, we show that type-B ARABIDOPSIS RESPONSE R...
متن کاملThe DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development.
The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomai...
متن کاملThe DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 Gene of Arabidopsis Acts in the Control of Meristem Cell Fate and Lateral Organ Development
The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 95 شماره
صفحات -
تاریخ انتشار 1998