Cohesion group approach for evolutionary analysis of TyrA, a protein family with wide-ranging substrate specificities.
نویسندگان
چکیده
Many enzymes and other proteins are difficult subjects for bioinformatic analysis because they exhibit variant catalytic, structural, regulatory, and fusion mode features within a protein family whose sequences are not highly conserved. However, such features reflect dynamic and interesting scenarios of evolutionary importance. The value of experimental data obtained from individual organisms is instantly magnified to the extent that given features of the experimental organism can be projected upon related organisms. But how can one decide how far along the similarity scale it is reasonable to go before such inferences become doubtful? How can a credible picture of evolutionary events be deduced within the vertical trace of inheritance in combination with intervening events of lateral gene transfer (LGT)? We present a comprehensive analysis of a dehydrogenase protein family (TyrA) as a prototype example of how these goals can be accomplished through the use of cohesion group analysis. With this approach, the full collection of homologs is sorted into groups by a method that eliminates bias caused by an uneven representation of sequences from organisms whose phylogenetic spacing is not optimal. Each sufficiently populated cohesion group is phylogenetically coherent and defined by an overall congruence with a distinct section of the 16S rRNA gene tree. Exceptions that occasionally are found implicate a clearly defined LGT scenario whereby the recipient lineage is apparent and the donor lineage of the gene transferred is localized to those organisms that define the cohesion group. Systematic procedures to manage and organize otherwise overwhelming amounts of data are demonstrated.
منابع مشابه
Cyclohexadienyl dehydrogenase from Pseudomonas stutzeri exemplifies a widespread type of tyrosine-pathway dehydrogenase in the TyrA protein family.
The uni-domain cyclohexadienyl dehydrogenases are able to use the alternative intermediates of tyrosine biosynthesis, prephenate or L-arogenate, as substrates. Members of this TyrA protein family have been generally considered to fall into two classes: sensitive or insensitive to feedback inhibition by L-tyrosine. A gene (tyrA(c)) encoding a cyclohexadienyl dehydrogenase from Pseudomonas stutze...
متن کاملThe FGGY Carbohydrate Kinase Family: Insights into the Evolution of Functional Specificities
Function diversification in large protein families is a major mechanism driving expansion of cellular networks, providing organisms with new metabolic capabilities and thus adding to their evolutionary success. However, our understanding of the evolutionary mechanisms of functional diversity in such families is very limited, which, among many other reasons, is due to the lack of functionally we...
متن کاملEffectiveness of family therapy on its cohesion and flexibility
Introduction: Family is the main part of a society and achieving a healthy society is because of a healthy family. Exact description of societal characteristics requires studying profoundly and clearly about the family relationship in that very society. Therefore, the most important thing for improving a society is to improve the family and the relationship between its members. Objectives: T...
متن کاملA core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis.
The TyrA protein family includes prephenate dehydrogenases, cyclohexadienyl dehydrogenases and TyrA(a)s (arogenate dehydrogenases). tyrA(a) from Synechocystis sp. PCC 6803, encoding a 30 kDa TyrA(a) protein, was cloned into an overexpression vector in Escherichia coli. TyrA(a) was then purified to apparent homogeneity and characterized. This protein is a model structure for a catalytic core dom...
متن کاملEvolutionary features of 8K (KDa) silencing suppressor protein of Potato mop-top virus
The cysteine-rich 8K protein of Potato mop-top virus (PMTV) suppresses host RNA silencing. In this study, evolutionary analysisof 8K sequences of PMTV isolates was studied on the basis of nucleotide and amino acid sequences. Twenty-one positively selected sites were identified in 8K codingregions. Recombination events were found in the 8K of PMTV isolates with a rate of 1.8. Totally 30 haplotyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 72 1 شماره
صفحات -
تاریخ انتشار 2008