Fermentative and Photochemical Production of Hydrogen in Algae

نویسندگان

  • Hans Gaffron
  • Jack Rubin
چکیده

1.. After 2 hours of fermentation in nitrogen the metabolism of those algae which were found capable of photoreduction with hydrogen changes in such a way that molecular hydrogen is released from the cell in addition to carbon dioxide. 2. The amount of hydrogen formed anaerobically in the dark depends on the amount of some unknown reserve substance in the cell. More hydrogen is formed in presence of added glucose, but no proportionality has been found between the amount of substrate added and that of hydrogen formed. This is probably due to the fact that two types of fermentation reactions exist, with little or no connection between them. Whereas mainly unknown organic acids are formed during the autofermentation, the addition of glucose causes a considerable increase in the production of lactic acid. 3. Algae which have been fermenting for several hours in the dark produce upon illumination free hydrogen at several times the rate observed in the dark, provided carbon dioxide is absent. 4. Certain concentrations of dinitrophenol strongly inhibit the evolution of hydrogen in the dark. Fermentation then continues mainly as a reaction leading to lactic acid. In such poisoned algae the photochemical liberation of hydrogen still continues. 5. If the algae are poisoned with dinitrophenol the presence of carbon dioxide will not interfere with the photochemical evolution of hydrogen. 6. The amount of hydrogen released in this new photochemical reaction depends on the presence of an unknown hydrogen donor in the cell; it can be increased by the addition of glucose but not in proportion to the amount added. 7. The results obtained allow for a more correct explanation of the anaerobic induction period previously described for Scenedesmus and similar algae. The possibility of a photochemical evolution of hydrogen had not been taken into account in the earlier experiments. 8. The origin of the hydrogen released under the influence of light is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-hydrogen production from waste materials

Hydrogen is a valuable gas as a clean energy source and as feedstock for some industries. Therefore, demand on hydrogen production has increased considerably in recent years. Electrolysis of water, steam reforming of hydrocarbons and auto-thermal processes are well-known methods for hydrogen gas production, but not cost-effective due to high energy requirements. Biological production of hydroge...

متن کامل

Distinct Mechanisms Regulating Gene Expression Coexist within the Fermentative Pathways in Chlamydomonas reinhardtii

Under dark anoxia, the unicellular green algae Chlamydomonas reinhardtii may produce hydrogen by means of its hydrogenase enzymes, in particular HYD1, using reductants derived from the degradation of intercellular carbon stores. Other enzymes belonging to the fermentative pathways compete for the same reductants. A complete understanding of the mechanisms determining the activation of one pathw...

متن کامل

Gaseous Biofuels Production from Sweet Sorghum and Olive Pulp

Biomass from energy crops and agroindustrial wastes can be biologically converted to liquid or gaseous fuels, such as ethanol, methanol, methane and hydrogen, which was recently characterized as the fuel of the future. Hydrogen is a clean and environmentally friendly fuel, which produces water instead of greenhouse gases when combusted. It can be produced by renewable raw materials, such as org...

متن کامل

The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.

The metabolome of the model species Chlamydomonas reinhardtii has been analyzed during 120 h of sulfur depletion to induce anaerobic hydrogen (H(2)) production, using NMR spectroscopy, gas chromatography coupled to mass spectrometry, and TLC. The results indicate that these unicellular green algae consume freshly supplied acetate in the medium to accumulate energy reserves during the first 24 h...

متن کامل

The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii.

The photosynthetic green alga Chlamydomonas reinhardtii is capable of performing a complex fermentative metabolism which is related to the mixed acid fermentation of bacteria such as Escherichia coli. The fermentative pattern includes the products formate, ethanol, acetate, glycerol, lactate, carbon dioxide and molecular hydrogen (H(2)). H(2) production is catalysed by an active [Fe]-hydrogenas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 1942