A variational formulation of electrostatics in a medium with spatially varying dielectric permittivity.
نویسندگان
چکیده
In biological and synthetic materials, many important processes involve charges that are present in a medium with spatially varying dielectric permittivity. To accurately understand the role of electrostatic interactions in such systems, it is important to take into account the spatial dependence of the permittivity of the medium. However, due to the ensuing theoretical and computational challenges, this inhomogeneous dielectric response of the medium is often ignored or excessively simplified. We develop a variational formulation of electrostatics to accurately investigate systems that exhibit this inhomogeneous dielectric response. Our formulation is based on a true energy functional of the polarization charge density. The defining characteristic of a true energy functional is that at its minimum it evaluates to the actual value of the energy; this is a feature not found in many commonly used electrostatic functionals. We explore in detail the charged systems that exhibit sharp discontinuous change in dielectric permittivity, and we show that for this case our functional reduces to a functional of only the surface polarization charge density. We apply this reduced functional to study model problems for which analytical solutions are well known. We demonstrate, in addition, that the functional has many properties that make it ideal for use in molecular dynamics simulations.
منابع مشابه
Maxwell’s Equations in an Unbounded Structure
This paper is concerned with the mathematical analysis of the electromagnetic wave scattering by an unbounded dielectric medium, which is mounted on a perfectly conducting infinite plane. By introducing a transparent boundary condition on a plane surface confining the medium, the scattering problem is modeled as a boundary value problem of Maxwell’s equations. Based on a variational formulation...
متن کاملA completely iterative method for the infinite domain electrostatic problem with nonlinear dielectric media
We present an iterative method for the solution of the exterior all-space electrostatic problem for nonlinear dielectric media. The electric potential is specified on interior boundaries and the electric field decays at infinity. Our approach uses a natural variational formulation based on the total energy of the nonlinear dielectric medium subject to boundary conditions. The problem is decompo...
متن کاملAnalysis of a Nonlocal Poisson-Boltzmann Equation
A nonlinear, nonlocal dielectric continuum model, called the nonlocal modified PoissonBoltzmann equation (NMPBE), has been proposed to reflect the spatial-frequency dependence of dielectric permittivity in the calculation of electrostatics of ionic-solvated biomolecules. However, its analysis is difficult due to its definition involving Dirac delta distributions for modeling point charges, expo...
متن کاملLocal dielectric permittivity near an interface
– A statistical mechanics expression is derived for the space-dependent dielectric permittivity of a polar solvent near an interface. The asymptotic behaviour of this local per-mittivity is calculated in the low density limit, near a planar interface. The potential of mean force between two ions is shown to agree with the prediction of macroscopic electrostatics for large separations parallel t...
متن کاملRigorous treatment of electrostatics for spatially varying dielectrics based on energy minimization.
An energy minimization formulation of electrostatics that allows computation of the electrostatic energy and forces to any desired accuracy in a system with arbitrary dielectric properties is presented. An integral equation for the scalar charge density is derived from an energy functional of the polarization vector field. This energy functional represents the true energy of the system even in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 138 5 شماره
صفحات -
تاریخ انتشار 2013