Feature Selection Techniques for Classification of Satellite Images with Fuzzy Artmap Neural Networks
نویسندگان
چکیده
The selection of most relevant features can significantly reduce the resource requirement associated with fuzzy ARTMAP neural networks for the classification of high-dimensional data extracted from satellite imagery. This paper introduces a variant of a wrapper-type feature ranking technique that was previously proposed for ARTMAP neural networks by Parsons and Carpenter. As with the originally proposed technique, it evaluates the relevance of features based solely on between-class scatter from the geometry of internal ARTMAP categories. This paper also explores the inclusion into these feature ranking techniques of a within-class scatter measurement. Comparative simulations, performed on the Landsat multi-spectral imagery benchmark ('Satimage' from the StatLog repository), indicate that a significantly lower generalization error and fewer resources may be achieved by learning subsets produced by techniques that evaluate the relevance of features using both betweenand within-class scatter.
منابع مشابه
Study on the Trend of Range Cover Changes Using Fuzzy ARTMAP Method and GIS
The major aim of processing satellite images is to prepare topical and effectivemaps. The selection of appropriate classification methods plays an important role. Amongvarious methods existing for image classification, artificial neural network method is ofhigh accuracy. In present study, TM images of 1987, and ETM+ images of 2000 and 2006were analyzed using artificial fuzzy ARTMAP neural netwo...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملDiagnosis of brain tumor using image processing and determination of its type with RVM neural networks
Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...
متن کاملApplication of Data mining in Protein sequence Classification
Protein sequence classification involves feature selection for accurate classification. Popular protein sequence classification techniques involve extraction of specific features from the sequences. Researchers apply some well-known classification techniques like neural networks, Genetic algorithm, Fuzzy ARTMAP, Rough Set Classifier etc for accurate classification. This paper presents a review ...
متن کاملA New Technique Involving Data Mining in Protein Sequence Classification
Feature selection is more accurate technique in protein sequence classification. Researchers apply some well-known classification techniques like neural networks, Genetic algorithm, Fuzzy ARTMAP, Rough Set Classifier etc for extracting features.This paper presents a review is with three different classification models such as fuzzy ARTMAP model, neural network model and Rough set classifier mod...
متن کامل