The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent

ثبت نشده
چکیده

The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME). Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS) and volatile solid (VS), M-Alkalinity, pH, H2S and CO2 concentration in biogas at hydraulic retention time (HRT) 6 days. Before HRT of 6 days reached, initial trace metal compositions were 25.2 mg/L of Fe, 0.42 mg/L of Co, and 0.49 mg/L of Ni. After that, composition of trace metal were consisted only Co and Ni. The results showed that Fe as a trace metal did not affect the production or quantity of biogas. When Fe concentration reached over to 330 mg/L then concentration of CH4, total solid (TS) and volatile solid (VS) decreased. Moreover, the higher the Fe contents the smaller of H2S production. Fe content in POME from the same mill had different concentration, as the consequence biogas with different H2S concentrations were produced as well. Thus, Fe in the trace metals is no longer required if high concentration of Fe already existed in POME because it can reduce the formation of H2S. In addition, too high concentration of Fe in POME can be toxic for microorganism in the fermentation of biogas. Keywords—methane (CH4), palm oil mill effluent (POME), Fe concentration, trace metal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biohydrogen generation from palm oil mill effluent using anaerobic contact filter

In this study treatment of palm oil mill effluent was carried out with the intention to produce hydrogen during the anaerobic degradation process. The hydrogen generating microflora was isolated from the cow dung based on pH adjustment (pH 5) coupled with heat treatment (2 h). The microflora was initially tested for its hydrogen generating capability for varying fermentation pH of 4, 5, 6 and 7...

متن کامل

Production of Biogas from Palm Oil Mill Effluent at Pilot Scale: Effect of Recycle Sludge

An anaerobic digestion of palm oil mill effluent (POME) for production of biogas was carried out at pilot scale under thermophilic condition. The objective of this research is to maintain short hydraulic retention time (HRT) and high degradation of the POME to biogas by applying recycle sludge. Fresh POME from PTPN IV without further treatment was used as feed. The fermentation process occurred...

متن کامل

Phytoremediation of Palm Oil Mill Effluent by using Pistia Stratiotes Plant and Algae Spirulina sp for Biomass Production (RESEARCH NOTE)

Producing crude palm oil (CPO) will have side effect on producing palm oil mill effluent (POME).  Besides of high COD /BOD contents, POME still contains high amount of nutrients (nitrogen, phosphor and mineral). Traditional treatment of palm oil mill effluent using facultative anaerobic method not fully eliminated COD and BOD into allowable limit. The objective of this research was to utilize p...

متن کامل

Physico-Chemical and Genotoxicity Assessments of Palm Oil Mill Effluent Generated by a Corporate Refinery In Nigeria

The rising global demand for palm oil and its associated products has led to increased numbers of palm oil refineries with its attendant effluent discharge. Many researches have confirmed the ecological disruptive potentiality of Palm Oil Mill Effluent (POME), still further attention has to be directed at POME’s potential genotoxicity. The present study has made physico-chemical and genotoxicit...

متن کامل

Physico-Chemical and Genotoxicity Assessments of Palm Oil Mill Effluent Generated by a Corporate Refinery In Nigeria

The rising global demand for palm oil and its associated products has led to increased numbers of palm oil refineries with its attendant effluent discharge. Many researches have confirmed the ecological disruptive potentiality of Palm Oil Mill Effluent (POME), still further attention has to be directed at POME’s potential genotoxicity. The present study has made physico-chemical and genotoxicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012